
HP l6s2BlnP 16538
Logic Analyzers

Programming Reference

HP 16528/HP 16538
Logic Analyzers

Programming Reference

FIJdI HEWLETT
~~ PACKARD

Your comments Please HP 16508/1651 B Programming
Your comments assist us in mecting your needs bctter. Plcase complete this questionnaire and rcturn it to us. Feel frcc to add

any additional comments that you might havc. All comments and suggestions become the propeny of Hcwlett-Packad. Omit
any questions that you feel would be proprietary.

Ycs No

1. Werc you satisfied with the operation of thc irrstrument orer the bus? t I I 1

2. What measurements will this instrument be used to make over the bus?

3. What t)"e of controller are you using?

4. What programming language are you using?

5. What do you like most about programming the instrument?

6. What would you like to see changed or improved?

8. Please rate

7. Which sections of the manual have you used?

] Introductory chapters 1 through 4

I Command List chapters 5 through 27

I Appendix A
] Programming Examples

I Index

the manual on the following

4 = Excellent 3: Good

J Breadth and depth of information

J Ability to easily find information

2: Adequate l. = Poor

J Ability to understand and apply the information provided in the manual

Please explain:

9. What is your e4perience with programming instnrments over the bus?

J No previous experience

] Irss than L year e4perience

I More than L year's experience on one model

I More than l year's e4perience on several models

Name

Address

Phone

THANK YOU FOR YOUR HELP

C-ompany

Zip Cnde

Instnrment Serial #

NO POSTAGE NECESSARY IF MAILED IN U.S.A.

Your Comments Please HP 16508/1651 8 Programming
Your comments assist us in meeting your needs better. Please complete this questionnaire and return it to us. Feel free to add
any additional comments that you might have. All comments and suggestions become the property of Hewlett-Packard. Omit
any questions that you feel would be proprietary.

Yes No

1. Were you satisfied with the operation of the instrument over the bus?

2. What measurements will this instrument be used to make over the bus?

[] []

3. What type of controller are you using? _

4. What programming language are you using? _

5.Whatdoyoulikem~taboutp~gramm~gthe~~rument? _

~Wh~~uW~uli~oo~e~~Fdm~p~~ _

7. Which sections of the manual have you used?

[] Introductol)' chapters 1 th~ugh 4
[] Command List chapters 5 through 27
[] Appendix A
[] Programming Examples
[] Index

8. Please rate the manual on the following:

4 =Excellent 3 =Good 2 = Adequate 1=Poor

[] Breadth and depth of information
[] Ability to easily find information
[] Ability to understand and apply the information provided in the manual

Please explain: _

9. What is your experience with programming instruments over the bus?

[] No previous experience
[] Less than 1 year experience
[] More than 1 year's experience on one model
[] More than 1 year's experience on ~veral models

Name Company

Address Zip Code
Phone Instrument Serial # _

THANK YOU FOR YOUR HELP NO POSfAGE NECESSARY IF MAILED IN U.S.A.

Your cooperation in completing and rsturning this form
will be greatly appreciated. Thank you.

FOLD HERE

ftE SFT|.TJJ

BUSINESS REPLY CARD
FIRST CLASS PEFTIIIT IIO. 1303 COLORADO SPRINGS, COIT'RADO

POSTAGE WILL BE PAID EY ADDRESSEE

HEWLETT-PACKARD
COLORADO SPRINGS DIVISION
ATTN: PUBLICATIONS DEPT.
PO. BOX 21W
coLoRADO SPR|NGS, COLORADO 90901-gg5g

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED TATES

lllill

Your cooperation in completing and returning this form
will be greatly appreciated. Thank you.

FOLD HERE

FIJn- HEWLETT
a:~ PACKARD

II1II1
NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 1303 COLORADO SPRINGS, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

HEWLETT-PACKARD
COLORADO SPRINGS DIVISION
ATTN: PUBLICATIONS DEPl:
RO. BOX 2197
COLORADO SPRINGS, COLORADO 80901-9959

Programming Reference

HP 165ZA|HP 16538 Logic Analyzers

ftE 5FY-lTJ

@Copyrigbt Hewlett-Packard Company 1989

Manual N 'mber 01652-9803 Printed in the U.S.A. December 1989

Programming Reference

HP 16528/HP 16538 Logic Analyzers

rhQW HEWLETT
~~ PACKARD

©Copyright Hewlett-Packard Company 1989

Manual Number 01652-90903 Printed in the U.S.A. December 1989

Product This Hewlett-Packard product has a warranty against defects in material
and workmanship for a period of three years from date of shipment.
During warranty period, Hewlett-Packard Company will, at its option,
either repair or replace products that prove to be defective.

For warranty service or repair, this product must be returned to a service
facility designated by Hewlett-Packard. However, warranty service for
products installed by Hewlett-Packard and certain other products
designated by Hewlett-Packard will be performed at the Buyer's facility at
no charge within the Hewlett-Packard service travel area. Outside
Hewlett-Packard service travel areas, warranty service will be performed
at the Buyer's facility only upon Hewlett-Packard's prior agreement and
the Buyer shall pay Hewlett-Packard's round trip travel e{penses.

For products returned to Hewlett-Packard for warranty service, the Buyer
shall prepay shipping charges to Hewlett-Packard and Hewlett-Packard
shall pay shipping charges to return the product to the Buyer. However,
the Buyer shall pay all shipping charges, duties, and tanes for products
returned to Hewlett-Packard from another country.

Hewlett-Packard warrants that its software and firmware designated by
Hewlett-Packard for use with an instrument will execute its programming
instructions when properly installed on that instrument. Hewlett-Packard
does not warrant that the operation of the instrument software, or
firmware will be uninterrupted or error free.

The foregoing warranty shall not apply to defects resulting from improper
or inadequate maintenance by the Buyer, Buyer-supplied software or
interfacing, unauthorized modification or missse, operation outside of the
environmental specifications for the product, or improper site preparation
or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED.
HEWLETT-PACKARD SPECIFICALLY DISCLAIMS THE
IMPLIED WARRANTIES OR MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

Warranty

Limitation of Wananty

Product
Warranty

This Hewlett-Packard product has a warranty against defects in material
and workmanship for a period of three years from date of shipment.
During warranty period, Hewlett-Packard Company will, at its option,
either repair or replace products that prove to be defective.

For warranty service or repair, this product must be returned to a service
facility designated by Hewlett-Packard. However, warranty service for
products installed by Hewlett-Packard and certain other products
designated by Hewlett-Packard will be performed at the Buyer's facility at
no charge within the Hewlett-Packard service travel area. Outside
Hewlett-Packard service travel areas, warranty service will be performed
at the Buyer's facility only upon Hewlett-Packard's prior agreement and
the Buyer shall pay Hewlett-Packard's round trip travel expenses.

For products returned to Hewlett-Packard for warranty service, the Buyer
shall prepay shipping charges to Hewlett-Packard and Hewlett-Packard
shall pay shipping charges to return the product to the Buyer. However,
the Buyer shall pay all shipping charges, duties, and taxes for products
returned to Hewlett-Packard from another country.

Hewlett-Packard warrants that its software and frrmware designated by
Hewlett-Packard for use with an instrument will execute its programming
instructions when properly installed on that instrument. Hewlett-Packard
does not warrant that the operation of the instrument software, or
firmware will be uninterrupted or error free.

Limitation of Warranty The foregoing warranty shall not apply to defects resulting from improper
or inadequate maintenance by the Buyer, Buyer-supplied software or
interfacing, unauthorized modification or misuse, operation outside of the
environmental specifications for the product, or improper site preparation
or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED.
HEWLETT-PACKARD SPECIFICALLY DISCLAIMS THE
IMPLIED WARRANTIES OR MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

Exclusive Remedies THE REMEDIES PROVIDED HEREIN ARE THE BTryER'S SOLE
AND EXCLUSIVE REMEDIES. HEWLETT-PACKARD SHALL
NOT BE LIABLE FOR ANTY DIRECT,INDIRECT, SPECIAL
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER
BASED ON CONTRACT, TORT, ORANTY OTHERLEGAL
THEORY.

Assistance Product maintenance agreements and other customer assistance
agreements are available for Hewlett-Packard products.

For any assistance, contact your neatest Hewlett-Packard Sales and
Service Office.

Certification Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard
further certifies that its calibration measluements are traceable to the
United States National Bureau of Standards, to the extent allowed by the
Bureau's calibration facility, and to the calibration facilities of other
International Standards Organization members.

Satety This product has been designed and tested according to International
Safety Requirements. To ensure safe operation and to keep the product
safe, the information, cautions, and warnings in this manual must be
heeded.

Exclusive Remedies THE REMEDIES PROVIDED HEREIN ARE THE BUYER'S SOLE
AND EXCLUSIVE REMEDIES. HEWLETT-PACKARD SHALL
NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER
BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL
THEORY.

Assistance Product maintenance agreements and other customer assistance
agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and
Service Office.

Certification Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard
further certifies that its calibration measurements are traceable to the
United States National Bureau of Standards, to the extent allowed by the
Bureau's calibration facility, and to the calibration facilities of other
International Standards Organization members.

Safety This product has been designed and tested according to International
Safety Requirements. To ensure safe operation and to keep the product
safe, the information, cautions, and warnings in this manual must be
heeded.

Printing History

New editions are complete revisions of the manual. Update packsgos,
which are issued between editiom, contain additional and replacement
pages to be merged into the manual by the customer. The dates on the
title page change only when a new edition or a new update is published.
No information is incorporated into a reprinting uttless it appears as a
prior update; the edition does not change when an update is io"orporated.

A software code may be printed before the date; this indicates the version
level of the software product at the time of the manual or update was
issued. Many product updates and fxes do not require manual changes
an4 conversely, manual corrections may be done without accompanyrng
product changes. Therefore, do not e4pect a one to one correspondence
between product updates and manual updates.

Edition 1 December 1989 0L652-90903

Printing History

New editions are complete revisions of the manual. Update packages,
which are issued between editions, contain additional and replacement
pages to be merged into the manual by the customer. The dates on the
title page change only when a new edition or a new update is published.
No information is incorporated into a reprinting unless it appears as a
prior update; the edition does not change when an update is incorporated.

A software code may be printed before the date; this indicates the version
level of the software product at the time of the manual or update was
issued. Many product updates and fIXes do not require manual changes
and, conversely, manual corrections may be done without accompanying
product changes. Therefore, do not expect a one to one correspondence
between product updates and manual updates.

Edition 1 December 1989 01652-90903

The List of Effective Pages grves the data of the current edition and of any
pages changed in updates to that edition. Within the manud, any page
changed since the last edition will have the date the changes were made
printed on tle bottom of the page. If an update is incorporated when a
new edition of the manual is printed, the change dates are removed from
the bottom of the pages and the new edition date is listed in Printing
History and on the title page.

List of Effective Pages

Pages

All

Etfective Date

December 1989

List of Effective Pages

The List of Effective Pages gives the data of the current edition and of any
pages changed in updates to that edition. Within the manual, any page
changed since the last edition will have the date the changes were made
printed on the bottom of the page. If an update is incorporated when a
new edition of the manual is printed, the change dates are removed from
the bottom of the pages and the new edition date is listed in Printing
History and on the title page.

Pages

All

Effective Date

December 1989

Contents

Chapter 1

HP 16528/16538
Programming Reference

Introduction to Programming an Instrument
Introduction . . o . 1-1
AboutThisManual o... o. . .1--L
Programmingspta:r r....... o.................. o... o7--2

Talkingtothglnstrument .. r.. r.L-z
Instruction Sptax . o oL-2
OutputCommand................. o.......................L-3
DevicgAddress o..... o.. o............L-3
Instructions . o . . L-3
InstructionHeader e. . o r....1,-3
White Space .L-4
InstructionParameters....... . o.L-4
Headgr Tlpes . . o . o . . . o , . . .L-4
combinin$ commands from the same Subsystem . . o o l--5
DuplicateKgyvordsL-5
Query Usage o . ,L-6
ProgramHeaderOptions,. oL-7
ParameterSptarxRules o c... .,.L-7
InstructionTerminator o.L-9
SelectingMultiple Subsystems o . o oL-9

Programminganlnstru ent o o o.... o.................L-LO
Initialization............ o..... o.... . . .,L-L0
ExampleProgram . . o.... r. o. r ...1--11-
Program Overview o.............. o...........L-LL
Receiving Information from the Instrument o 1-11
ResponseHeaderOptions o o . . L-Lz
ResponseDataFormats . .,L-1-3
StringVariables o.... o.. r..... .L-!4
NumericBase o o.............. o.............L-1-5
NumericVariables o o.L-1,5
Definite-l"ength Block Response Data oL-L6
Multiple Querigs o . . . o oL-L7
InstrumentStatus ... o. o... o.... o...... o.................. L-L7

Contents - 1

Contents

Chapter 1 Introduction to Programming an Instrument

Introduction 1-1
About This Manual 1-1
Programming Syntax 1-2

Talking to the Instrument 1-2
Instruction Syntax 1-2
Output Command 1-3
Device Address 1-3
Instructions 1-3
Instruction Header 1-3
White Space 1-4
Instruction Parameters 1-4
Header Types 1-4
Combining Commands from the Same Subsystem 1-5
Duplicate Keywords 1-5
Query Usage 1-6
Program Header Options 1-7
Parameter Syntax Rules 1-7
Instruction Terminator 1-9
Selecting Multiple Subsystems 1-9

Programming an Instrument 1-10
Initialization 1-10
Example Program 1-11
Program Overview 1-11
Receiving Information from the Instrument 1-11
Response Header Options 1-12
Response Data Formats 1-13
String Variables 1-14
Numeric Base 1-15
Numeric Variables 1-15
DefInite-Length Block Response Data 1-16
Multiple Queries 1-17
Instrument Status 1-17

HP 16528/16538 Contents - 1
Programming Reference

Chapter 2 Programming Over HP-IB

Introduction o o . . . o . . . r . . r o t2-1-

Interface Capabilities2-L
CommandandDataConcepts c . o o2-L
Addressing o o . o2-t
Communicating Over the HP-IB Bus (HP 9000 Series 2001300

Controller) t r o r2-2
Irocal, Rgmote, and l-ocallockout o . . o,2-2
BusCommands'....o........r............... .2-3

DeviceClear,....................o.... .2-3
GroupExecuteTrigger (GET)2-3
Interface Clgar (IFC) o o. o.. ..2-3

Chapter 3 Programming Over RS-232C

Introduction t......... e .,...... e e3-L
Interface Operation o o. o o.3-1-
Cables .3-2
Minimum Three-Wire Interface with Softrvare Protocol3-2
Extended Interface with Hardware Handshake3-3
Cable Example . o3-4
Configuringthe Instrument Interfacg c . .,3-5
Interface Capabilitigs o.... o.... G.......3-5

Protocol t.. o... o. . ..3-5
Data Bits o . o o3-6

Communicating Over the RS-232C Bus (HP 9000 Series 20f'13ffi
Controller) . c3-6
IrockoutCommand,..... o..o o..... o........, ..3-7

Chapter 4

Contents - 2

Programming and Documentation Conventions

Introduction c o " . . .4-L
TruncationRule..... o.............. o...... .4-L
InfinityRepresgntation o.4-2
Sequential and Overlapped Commands . . o4-2
ResponseGengration o o....... o.... o t.. o...4-2
SyntaxDiagrams . o......... o......... o.. o. c. o...... c o. o.4-z
Notation Conventions and Definitions . . c o4-3
ThgCommandTrger.4-4

HP 16s28/16538
Programming Reference

Chapter 2

Chapter 3

Chapter 4

Contents - 2

Programming Over HP-IB
Introduction 2-1
Interface Capabilities 2-1
Command and Data Concepts 2-1
Addressing 2-1
Communicating Over the HP-IB Bus (HP 9000 Series 200/300
Controller) 2-2
Local, Remote, and Local Lockout 0 ••••••••••••••• 2-2
Bus Commands 2-3'

Device Clear 2-3
Group Execute Trigger (GET) 2-3
Interface Clear (IFC) 2-3

Programming Over RS-232C
Introduction 3-1
Interface Operation 3-1
Cables 3-2
Minimum Three-Wire Interface with Software Protocol 3-2
Extended Interface with Hardware Handshake 3-3
Cable Example 3-4
Configuring the Instrument Interface 3-5
Interface Capabilities 0 ••••••• 3-5

Protocol 3-5
Data Bits 3-6

Communicating Over the RS-232C Bus (HP 9000 Series 200/300
Controller) 3-6
Lockout Command 3-7

Programming and Documentation Conventions
Introduction 4-1
Truncation Rule 4-1
Infmity Representation 4-2
Sequential and Overlapped Commands 4-2
Response Generation 4-2
Syntax Diagrams 4-2
Notation Conventions and Definitions 4-3
The Command Tree 4-4

HP 16528/16538
Programming Reference

CommandTlpes o...................... o...,...... ..+4
TreeTraversalRules+4
Examples o o o+5

CommandSet Organization o o+10
Subsystems .4-L0

Program Examples . o4-I1,

Ghapter 5 Common Commands
Introduction o...5-1-

*CLS5-3
*ESE t o r5-4
*ESR . o o5-6
*IDN c...................... r5-8
*OPC o o .5-9
*RSTo.........................oo.....5-1-0
*SRE o . o . . .' o .5-11
*STB o .5-13
*WAI o o . r5-L5

Ghapter 6

HP 16528,/16538
Programming Reference

System Commands
Introduction o o .6-L

ARMBnco.......r.........o............ .6-4
DATA'''' .6-5

Logtc AnalyzerBlockData . .r.6-8
Sgction Header Description i .6-8
Sgction Data o o ,6-8
Data Preamble Dgscription .6-8
Acquisition Data Description , o6-L1-

Oscilloscope Block Data , .6-L8
Oscilloscope Data Section o .6-1,8

Section Hgader Description . o6-L8
Section Data o . o6-18

Oscilloscope DisplayData Section . . o o o 6-19
DSP o . . . o o o r . . o6-20
ERRof . . o o o . o . .6-2!
HEADeT o.........................tr.... .6-22
KEY o o . o6-23
LER . o o o |6-25
LOCKouto..t.. r.o..........,.............6-26

Contents - 3

Command Types 4-4
Tree Traversal Rules 4-4
Examples 4-5

Command Set Organization 4-10
Subsystems 4-10

Program Examples 4-11

Chapter 5 Common Commands

Introduction 5-1
*C~ 5-3
*ESE 5-4
*ESR ~ 5-6
*IDN 5-8
*OPC 5-9
*RST 5-10
*SRE 5-11
*STB 5-13
*WAI 5-15

Chapter 6 System Commands

Introduction 6-1
ARMBnc 6-4
DATA 6-5

Logic Analyzer Block Data .. : 6-8
Section Header Description 6-8
Section Data 6-8
Data Preamble Description 6-8
Acquisition Data Description 6-11

Oscilloscope Block Data 6-18
Oscilloscope Data Section 6-18

Section Header Description 6-18
Section Data 6-18

Oscilloscope Display Data Section 6-19
DSP 6-20
ERRor 6-21
HEADer 6-22
KEy 6-23
LER 6-25
LOCKout 6-26

HP 16528/16538 Contents - 3
Programming Reference

LONGform............................ ...6-27
MENU . r t . . .6-?3
MESE ... o o.. o.................. o................. ...6-29
MESR r o .6-31
PPOW9T o... o..... o....... o.. o..... o.... .6-33
PRINT .6-y
RMODe o....... o...... o o o.. o...6-35
SETup . o . o . . o o6-%
START ..o..6-38
STOPe................6'39

Chapter 7

Chapter 8

Contents - 4 HP 16s28/16s38
Programming Reference

Chapter 7

Chapter 8

Contents - 4

LONGform 6-27
MENU 6-28
MESE 6-29
MESR 6-31
PPOWer 6-33
PRINt 6-34
RMODe 6-35
SETup 6-36
STARt 6-38
STOP 6-39

MMEMory Subsystem
Introduction 7-1

AUToload 7-4
CATalog 7-5
COpy 7-6
DOWNload 7-7
INITialize 7-8
LOAD 7-9
LOAD 7-10
PACK 7-11
PURGe 7-12
REName 7-13
STORe 7-14
UPLoad 7-15

DLISt Subsystem

Introduction 8-1
DLISt 8-2
COLumn 8-3
LINE 8-5

HP 16528/16538
Programming Reference

Chapter 9 WLISI Subsystem
Introduction o o t . . r o9-f-

WLIST o... o... o r.............. r................. r9-2
OSTater...9-3
XSTate . g'4
OTIMeo.......9-5
XTIMeo......................o..o............. ...9'6

Ghapter 10 MACHine Subsystem
Introduction o .10-L

MACHingr.....r.............r...............L0-3
ARM o . r | o . . . 10-4
ASSign..................... o....o... r....o...........10-5
AUToscalg r............. o........ o.....1-0-6
NAME . o o . . .I0-7
TYPE e ... r....... t... o. o r r............ o.......L0-8

Chapter 11 SFORmat Subsystem

Introduction o . . . r o . . o ! 11-l-
SFORmato..... o........o..........L1-3
CLOCko.........o...... ..LL-4
CPERiod . .t. ' ! .11-5
LABOI . . .'. . . | . . o o . LL-6
MASTOT ...1-1-8
REMove o...........r -.... c. o...... r.................L1"-9
SLAV€ . . .' o r .1L-L0
THRgsholdo.......... o..o..r,....o..........11-L1

Chapter 12

HP 16528/16s38
Programming Reference

STRace Subsystem
Introduction o . Lz-L

STRace o...r.....o...........o....oo.. ..L2-4
BRANch o........................ oo.. .IZ-5
FIND o.... o o o..... o... r...............L2-8
PREStore,............. r....................o.... ...L2-L0
RANG9 o... o. o r......... o.... o........Lz'Lz

Contents - 5

Chapter 9 WLISt Subsystem

Introduction 9-1
WLISt 9-2
OSTate 9-3
XSTate 9-4
OTIMe 9-5
XTIMe 9-6

Chapter 10 MACHine Subsystem

Introduction 10-1
MACHine 10-3
ARM 10-4
ASSign 10-5
AUToscale 10-6
NAME 10-7
TypE 10-8

Chapter 11 SFORmat Subsystem

Introduction 11-1
SFORmat 11-3
CLOCk 11-4
CPERiod 11-5
LABel 0 •• 11-6
MASTer 11-8
REMove 11-9
SLAVe 11-10
THReshold 11-11

Chapter 12 STRace Subsystem

Introduction 12-1
STRace 12-4
BRANch 12-5
FIND 12-8
PREStore 12-10
RANGe 12-12

HP 16528/16538 Contents - 5
Programming Reference

RESTart . c L2'L4
SEQuence o '.................. o... o........... ..L2'I6
STOR9o........................... .L2'L7
TAG . r o oLz-Ig
TERM . oL2-2!

Ghapter 13 SLISI Subsystem
Introduction . , ,13-1

SLIST ..13-5
COLumno.........o...................o...L3-6
DATA ..o.........c.....................'.....o.....1-3-8
LINE . o o L3-9
MMODOo..............................r......13-10
OPATterno.................................L3-1,L
OSEarch o................ o...............1-3-13
OSTate . . o o .L3-L4
OTAGo.......o.......................o......L3-L5
RUNTiI o . o, L3-I6
TAVerageo.................... o......L3-L8
TMAXimum o...................... r.......... L3-L9
TMINimum r................ D............. o... .L3-?n
VRUNs . . . o . o . . o . . . o . . L3-21"
XOTag . . o o . oL3'22
XPATtgrn . c .L3-23
XSEarch o.......... o.... o... . e .. o.......13-25
XSTatg c o o . . . ' . o oL3-?5
XTAG r o . o .L3-27

Chapter 14

Contents - 6

SWAVeform Subsystem
Introduction o o o o1,+!

SWAVeform o ,L+3
ACCumulate ..o................... o.........o....... .L+4
DELay o.. .. .L+5
INSert . . . o o o oI+6
RANGO o . o . L+7
REMovg o.........,...............oo.........14-8

HP 1652B.,116s38
Programming Reference

Chapter 13

Chapter 14

Contents - 6

RESTart 12-14
SEQuence 12-16
STORe 12-17
TAG 12-19
TERM 12-21

SLISt Subsystem

Introduction 13-1
SLISt 13-5
COLumn 0 ••••••••••••••••••••••••••••••••• 13-6
DATA 13-8
LINE 13-9
MMODe 13-10
OPATtern 13-11
OSEarch 13-13
OSTate 0 ••••••••••••••• 13-14
OTAG 13-15
RUNTil 13-16
TAVerage 13-18
TMAXimum 13-19
TMINimum 13-20
VRUNs 13-21
XOTag 13-22
XPATtern 13-23
XSEarch 13-25
XSTate 13-26
XTAG 13-27

SWAVeform Subsystem

Introduction 14-1
SWAVeform 14-3
ACCumulate 14-4
DELay 14-5
INSert 14-6
RANGe 14-7
REMove 14-8

HP 16528/16538
Programming Reference

Ghapter 15 SCHart Subsystem
Introduction . o 15-L

SCHarto......o.......1,5-3
ACCumulate,... .'....,,............. .L5-4
HAXis o......... r o....... o..... o....i o...............1-5-5
VAXis o . o o .L5-7

Chapter 16 COMPare Subsystem
Introduction . r r 1-6-l-

COMPareo..r.................................L6-3
CMASk o o oL6-4
COPY '...... !.... c o....... o.. o.... r....16-5
DATA . o o L6-6
FIND .. o..... o............ o....... o..... o.......... t.L6-8
RANGO o o . 16-9
RUNTiIo...........o.........r....o.........16-L0

Chapter 17 TFORmat Subsystem
Introduction ... o................ o.... o.......... o..... o. ...L7-L

TFORmat . , , . . . o . I7-2
I-ABelo............ ...L7-3
REMove . , o . . . o .L7'5
THReshold o o .L7-6

Chapter 18

HP 16528/16538
Programming Relerence

TTRace Subsystem
Introduction . o . o o 18-1

TTRace . o.... o.................. o........... o..... r.L8-3
AMODe o,L8-4
DURation o....................L8-5
EDGE'o............ .o............1-8-6
GLITch, o.... o... o....18-8
PATTern,.......... o......r..........18-9

Contents - 7

Chapter 15 SCHart SUbsystem

Introduction 15-1
SCHart 15-3
ACCumulate ': 15-4
HAXis 15-5
VAXis 15-7

Chapter 16 COMPare Subsystem

Introduction 16-1
COMPare 16-3
CMASk 16-4
COpy 16-5
DATA 16-6
FIND 16-8
RANGe 16-9
RUNTil 16-10

Chapter 17 TFORmat Subsystem

Introduction 17-1
TFORmat 17-2
LABel 17-3
REMove 17-5
THReshold 17-6

Chapter 18 TTRace SUbsystem

Introduction 18-1
~Race 18-3
AMODe 18-4
DURation 18-5
EDGE 18-6
GLITch 18-8
PA~ern 18-9

HP 16528/16538 Contents - 7
Programming Reference

Chapter 19 TWAVeform Subsystem
Introduction . o r 1-9-L

TWAVeform o...,.......... r...,..... o.. o............19-5
ACCumulate o............. o..... r... o. o....... .L9-6
DELayr............... ..L9-7
INSert ... o.. o. o. r........... '..... r.. r...............1-9-8
MMODO o r....... o................. ' r...........L9-9
OcoNdition ...,..,. o................... e...........19-10
OPATternr o...... e........19-LL
OSEarch o.... o.......... o.. o.....L9-13
OTIMe . '... o........................ ' '............ .I9-I4
RANG9c...............o..............19-1-5
REMove,...........I9-L6
RUNTiI o....... r.....o. o.. o.,.....,..... o. o..L9-I7
SPERiod .. o................. ,..... o. oL9-L9
TAVgrage o....,... . ".L9-20
TMAXimum r... o... o .. c. o..I9-2L
TMINimumo......... .19-22
VRUNs r.. o...... '.................... I r......... c.I9-?3
XcoNdition o o . . . o o 19-24

XOTime ...,. o...... o. o........ o o... o..L9-25
XPATtern,.,.....,. ,r........L9-?6
XSEarch r r.......... o.... c...,. e......... oL9-?8

XTIMe!......... .e.......L9-29

Ghapter 20

Contents - I HP 16528116538
Programming Relerence

Chapter 19

Chapter 20

Contents - 8

TWAVeform Subsystem

Introduction 19-1
TWAVeform 0 ••••••••••••••• 19-5
ACCumulate 19-6
DELay 19-7
INSert 19-8
MMODe 19-9
OCONdition 19-10
OPATtern 19-11
OSEarch 19-13
OTIMe 19-14
RANGe 19-15
REMove 19-16
RUNTil 19-17
SPERiod 0 ••••••••••••• 19-19
TAVerage 19-20
TMAXimum 0 •••••••••••••••••••••••••••••• 19-21
TMINimum 19-22
VRUNs 0 .19-23
XCONdition 19-24
XOTime 19-25
XPATtern 19-26
XSEarch 19-28
XTIMe 19-29

SYMBol Subsystem

Introduction 0 ••••••••••••••••••••••••••••••••• 20-1
SYMBol 20-3
BASE 20-4
PAllern 20-5
RANGe 20-6
REMove 20-7
WIDTh 20-8

HP 1652B/1653B
Programming Reference

Chapter 21 SCOPe Subsystem
Introduction'.........'... r.... o..... ...27,-L

SCOPO... o.................. o.o...............o..... .21'3
ARM o . o | o 2L4
AUToscale . o2L-5
SMODO o...................... r... r...... r.. r.21'6

Chapter 22 CHANnel Subsystem

Introduction . . r o... o..........?2-L
CHANnel o............ o.... o...................22-3
COUPling . . o o r o . . ?24
OFFSet r .?2-5
PROB9 . o r o?2'6
RAhIGO . r 22-7

Chapter 23 TRlGger Subsystem
Introduction o o.................... o..... o........ ...?3-7.

The Edge
TriggerMode o.... o. o...?3-I
TheImmediateTriggerMode o.......... o. r. o....... .?3-L

TRIGger o . . . r . o?3-3
LEVEL r . o o?34
MODE o o . o . .?3-5
SLOPe . o?36
SOURce . o o?37

Ghapter 24

HP 16s28/16s38
Programming Reference

ACQuire Subsystem
Introduction o.. . r o.......... ...?*L
AcquisitionTlpgNormal o.?+2
AcquisitionTypeAver4ge o...... o............... o. o. o.... ...2+2

ACQuire . o . o?*3
COUNT ... o o......... o............... . o..... o....2+4
TY?E o . o o?*5

Contents - 9

Chapter 21 SCOPe SUbsystem
Introduction 21-1

SCOPe 21-3
ARM 21-4
AUToscale 21-5
SMODe 21-6

Chapter 22 CHANnel SUbsystem

Introduction 22-1
CHANnel 22-3
COUPling 22-4
OFFSet 22-5
PROBe 22-6
RANGe 22-7

Chapter 23 TRIGger SUbsystem

Introduction 23-1
The Edge
Trigger Mode 23-1
The Immediate Trigger Mode 23-1

TRIGger 23-3
LEVEL 23-4
MODE 23-5
SLOPe 23-6
SOURce 23-7

Chapter 24 ACQuire SUbsystem
Introduction 24-1
Acquisition Type Normal 24-2
Acquisition Type Average 24-2

ACQuire 24-3
COUNt 24-4
TYPE 24-5

HP 16528/16538 Contents - 9
Programming Reference

Chapter 25 TlMebase Subsystem
Introduction | o...... !.......25-1,

TlMebase r.....!........................?5'2
DELAY . e?5-3
MODE o o o .?5-4
RAI{GO . | r ?5-6

Chapter 26

Contents - 10

WAVeform Subsystem

lntrOduction . o%-L
Waveform
Record r . o . . o . o?6'3
DataAcquisitionTlpes o.... .. c.................?5-3

Normal Mode o .?f.-3
Average Mode . . o r o?f.'3

FormatforDataTransfef r e .., t e....?6-4
BYTEFormat o.......r.............. ...?5-4
WORDFormat o... o........... c...................26-5
ASCII Format .?6-5

DataConversion r.............?5-6
Conversion from Data Value to Voltage o?6-6
Conversion from Data Valug to Time o?5-6
Conversion from Data Value to Trigger Point 26-6

WAVeform c . . o o " .?5-7
COUNT . o?5-8
DATA o .?5-g
FORMat c . ?5-L0
POINts o o .?6-LL
PREAmble o o c, r?6-Lz
RECord o................................25-L3
SOURCO o........ . o c. r.......?6-L4
TWE . o?f.'Ls
VALid c o r?5-L6
XlNCremento.......o.., ...,.....6.........o?6-L7
XORigin o.......26-L8
XREFerence t....... r.... o..... r.. o........,.?5-L9
YlNCremgnt.......... c.... o ... o...o. o.......... .?5-20
YORigin . . . o o . 75-21,

YREFerence .. o...... r... r.. o.... o..26-22

HP 16528/16538
Programming Reference

Chapter 25

Chapter 26

Contents - 10

TIMebase SUbsystem

Introduction 25-1
TIMebase 25-2
DELAy 25-3
MODE 25-4
RANGe 25-6

WAVeform Subsystem

Introduction 26-1
Waveform
Record 26-3
Data Acquisition Types 26-3

Normal Mode 26-3
Average Mode e ••••••••• 26-3

Format for Data Transfer 26-4
BYTE Format 26-4
WORD Format 26-5
ASCII Format 26-5

Data Conversion 26-6
Conversion from Data Value to Voltage e • e •• 26-6
Conversion from Data Value to Time 26-6
Conversion from Data Value to Trigger Point 26-6

WAVeform 26-7
COUNt 26-8
DATA 26-9
FORMat 26-10
POINts 26-11
PREAmble 0 ••••••••••••••••••••••• 26-12
RECord 26-13
SOURce o ••••••••• 26-14
TYPE 26-15
\'ALid 26-16
XINCrement e ••••••••••••••••••••••••••••••••••• 26-17
XORigin 26-18
XREFerence 26-19
YINCrement 26-20
YORigin 0 •••• 26-21
YREFerence 26-22

HP 16528/16538
Programming Reference

Chapter 27 MEASure Subsystem
Introduction . r o27-!

Frequency o . o o .2t7-2
Period . . o . . o o o o o27'2
Peak-to-Peak o o .27-2
Positive Pulse Width r o o27-2
NegativePulseWidth r2'l-2
Risetime o . . o t27-2
Falltime .27'2
Prgshoot and Overshoot o,27-2
Preshoot . r . . . o27-2
Overshoot r........... o.... o....... o. o.......... ..27-2

MEASure . o . o o27-4
AI L . o . o ' r . . o o ' . o27-5

FALLTime . o . . .2'l-6
FREQuency'.................o.... o ..?7-7
NWIDth . o . . . o o .27-8
OVERShoot . o . . o27-9
PERiod . o o . o .27-10
PRESHoot o............r... ..27-LL
PWIDth . r o . . . o . . . r . . .27-Lz
RISETIme . o r r o . o o27-L3
SOURce '.... o........ o o...n-L4
VAMP[itude...............o........r....o .27-L5
VBASe .'.......o...,.27-L6
VMAX .. r.............o..,........27-L7
VMIN o r . . e . . o . . , . . . o r . . . o . .27-L8
VPP o....,r o..... r........27-L9
\/TOP o . . . o o o . o r . . o . .27-2fr

Appendix A

HP 16528/16538
Programming Reference

Contents - 1 1

Chapter 27 MEASure Subsystem
Introduction 27-1

Frequency 27-2
Period 27-2
Peak-to-Peak 27-2
Positive Pulse Width 27-2
Negative Pulse Width 27-2
Risetime 27-2
Falltime 27-2
Preshoot and Overshoot 27-2
Preshoot 27-2
Overshoot 27-2

MEASure 27-4
ALL 27-5
FALLTime 27-6
FREQuency 27-7
NWIDth 27-8
OVERShoot 27-9
PERiod 27-10
PRESHoot 27-11
PWIDth 27-12
RISETIme 27-13
SOURce 27-14
VAMPlitude 27-15
VBASe .' 27-16
VMAX 27-17
VMIN 27-18
VPP 27-19
"VTOP 27-20

Appendix A Message Communication and System Functions
Introduction A-I
Protocols A-2

Functional Elements A-2
Protocol Overview A-3
Protocol Operation A-3
Protocol Exceptions A-4

Syntax Diagrams A-5

HP 16528/16538 Contents - 11
Programming Reference

SptaxOverview e.. o...... o. r.. o o........... o r... r. o.... A-5
DeviceListeningsyrrtax o. . .. r . o c. A-8
DeviceTalkingSpta:r o... A-2!

Commgg Qgmmands o.......... A-2'l

Appendix B Status Repofiing
Introduction . o . o B-1

Event Status Register.. o o . B-3
ServiceRequestEnablg Register . o.. o.. r. r........ r........ B-3
BitDefinitions . e '..........,.................... o. o. B-3
KeyFeatures o................. r........ o... o........ B-4

SerialPoll o......... r... o o..... o..... o..... 8-6
UsingSerialPoll (HP-IB) o.... o o.... 8-6

Appendix C Enor Messages

DgviceDependentErrors o............... o........ C-l
Com-andErrorso.... o.......... r.....o......... o...... C'?
ExecutionErrors o......... o............ . r.. . .. o o.... C-3
lnternal Errors o o C4
QueryErrors o.... r.. o o..... o........... !........ o. C-5

lndex

Contents - 12 HP 16s28/16s38
Programming Reference

Appendix B

Appendix C

Index

Contents - 12

Syntax Overview A-5
Device Listening Syntax A-8
De\lice Talking Syntax A-21

Common Commands A-27

Status Reporting

Introduction B-1
Event Status Register B-3
Service Request Enable Register B-3
Bit Definitions B-3
Key Features B-4

Serial Poll B-6
Using Serial Poll (HP-IB) B-6

Error Messages

Device Dependent Errors C-1
Command Errors C-2
Execution Errors C-3
Internal Errors C-4
Query Errors C-5

HP 16528/16538
Programming Reference

!
-lo
GI
il'ter- -I=J.+
rra.t ct(rr cL
Grtr
=gT6'o3
Ei+io
3of

Introduction to
Programming an I nstrument

1

lntroduction This chapter introduces you to ttre basics of remote programming. The
programming instructions e4plained in this book conform to the
IEEE 488.2 Standard Digital Interface for Progr?mmable
Instrumentation. These programming instructions provide a meatts of
remotely contrelling the HP L652F,1538. There are three general
categories of use. You can:

o set up the instrunent and start measurements
o Retrieve setup information and measurement results
o Send measurement data to the instrunrent

The instructions listed in this manual gtve you access to the measluements
and front panel features of the HP L652F,1538. The complexity of your
programs and the tasks they accomplish are limited only by your
imagination. This programming reference is designed to provide a
concise description of each instruction.

About This
Manual

HP 16528/16s38
Programming Reference

This manual is organioed in 27 chapters. Chapter 1 is divided into two
sections. The first section (pages 2 through 9) concentrates on program
slmta4 and the second section (pages 10 througb 17) discusses
programming an instrument. Read either chapter Z,nProgramming Over
HP-IB,' or chapter 3, nProgramming Over RS-232C" for information
concerning the physical connection between the HP L652B,/538 and your
controller. Chapter 4, oProgramming and Documentation Conventions n

gtves an overview of all instructions and also explains the notation
conventions used in our syntax definitions and examples. The lsalaining
chapters 5 through 27 are used to e4plai" each group of instructions.

lntroduction to Programming an Instrument
1-1

Introduction to
Programming an Instrument

1

Introduction

About This
Manual

HP 16528/16538
Programming Reference

This chapter introduces you to the basics of remote programming. The
programming instructions explained in this book conform to the
IEEE 488.2 Standard Digital Interface for Programmable
Instrumentation. These programming instructions provide a means of
remotely controlling the HP 1652B/53B. There are three general
categories of use. You can:

• Set up the instrument and start measurements
• Retrieve setup information and measurement results
• Send measurement data to the instrument

The instructions listed in this manual give you access to the measurements
and front panel features of the HP 1652B/53B. The complexity of your
programs and the tasks they accomplish are limited only by your
imagination. This programming reference is designed to provide a
concise description of each instruction.

This manual is organized in 27 chapters. Chapter 1 is divided into two
sections. The rust section (pages 2 through 9) concentrates on program
syntax, and the second section (pages 10 through 17) discusses
programming an instrument. Read either chapter 2, "Programming Over
HP-IB," or chapter 3, "Programming Over RS-232C" for information
concerning the physical connection between the HP 1652B/53B and your
controller. Chapter 4, "Programming and Documentation Conventions,"
gives an overview of all instructions and also explains the notation
conventions used in our syntax defmitions and examples. The remaining
chapters 5 through 27 are used to explain each group of instructions.

Introduction to Programming an Instrument
1--1

Programming
Syntax

Talking to the
Instrument

ln general, computers acting as controllers communicate with the

instrument by sendirg and receiving messages over a remote interface,
such as FIP-IB or RS-232C. Instructions for programming the HP
L652B153B wiil normally appe:u as ASCII character strings embedded
inside the output statements of a nhostn language available on your
controller. The host language's input statements are used to read in
responses from the HP L65281538.

For example, HP 9000 Series z0fJfin BASIC uses the OUTPLJT
statement for sending commands and queries to the HP L65281538. After
a query is sent, the response is usually read io ustog the ENTER
statement. All programming examples in this manual are presented in
BASIC. The following BASIC statement sends a command which causes

the I{P L652Bl53B's machine 1 to be a state analyznr:

OUTPUT XXX ; " : l,lACHI NEl : TYPE STATE" <terminator>

Each part of the above statement is e:rplained in the following pages.

To program the instrument remotely, you must have an understanding of
the command format and structure expected by the instnrment. The IEEE
488.2 slmtax rules govern how individual elements such as headers,

separators, pilameters and terminators may be grouped together to form
complete instructions. Spta:r definitions are also given to show how
query responses will be formatted. Figure 1-1 shows the main sptactical
parts of a gpical program statement.

DISPLAY ,2'

OUTPUT COIil(AND

DEVICE ADDRESS

INSTRUCTION HEADER

Il'I.tITE SPACE

INSTRIJCT ION PARAMETERS

Instruction Syntax

Figure 1-1. Program Message Syntax

Introduction to Programming an lnstrument
1-2

HP 1652A116538
Programming Reference

OUTPUT XXX ; ,. : SYSTEM : MENU

Programming
Syntax

Talking to the
Instrument

In general, computers acting as controllers communicate with the
instrument by sending and receiving messages over a remote interface,
such as HP-m or RS-232C. Instructions for programming the HP
1652B/53B will normally appear as ASCII character strings embedded
inside the output statements of a "host" language available on your
controller. The host language's input statements are used to read in
responses from the HP 1652B/53B.

For example, HP 9000 Series 2001300 BASIC uses the OUTPUT
statement for sending commands and queries to the HP 1652B/53B. After
a query is sent, the response is usually read in using the ENTER
statement. All programming examples in this manual are presented in
BASIC. The following BASIC statement sends a command which causes
the HP 1652B/53B's machine 1 to be a state analyzer:

OUTPUT XXX;":MACHINEl:TVPE STATE" <terminator>

Each part of the above statement is explained in the following pages.

Instruction Syntax To program the instrument remotely, you must have an understanding of
the command format and structure expected by the instrument. The IEEE
488.2 syntax rules govern how individual elements such as headers,
separators, parameters and terminators may be grouped together to form
complete instructions. Syntax definitions are also given to show how
query responses will be formatted. Figure 1-1 shows the main syntactical
parts of a typical program statement.

INSTRUCTION
I

OUTPUT COMMAND O_U--'TUT XXIX;IIT:SYSTEM:MENU DISPLAY.2'

DEVICE ADDRESS -----------1.
INSTRUCTION HEADER

WHITE SPACE -------------------'

INSTRUCTION PARAMETERS -----------------------~

Figure 1-1. Program Message Syntax

Introduction to Programming an Instrument
1-2

HP 16528/16538
Programming Reference

Output Command

Device Address

Instructions

Instruction Header

HP 16528,116538
Programming Reference

The output command is entirely dependant on t\e language you choose to
use. Throughout this manual HP 90m Series ?ffifffi BASIC 4.0 is used in
the prog'arnming examples. People using another language will need to
find the equivalents of BASIC commands like OUTPLIT, ENTER and

CLEAR in order to convert the examples. The instructions for the

HP L652B153B are always shown between the double-quotes.

The location where the device address must be specified is also dependent
on the host language which you are using. In some languagos, this could
be specified outside the output 6pmmand. In BASIC, this is always

specified after the keyvord OUTPLIT. The examples in this manual use a

generic address of XXX. When wittog programs, the n nmber you use

will depend on the cable you use in addition to the actual address. If you

are using an HP-IB, see chapter 2. RS-232C users should refer to
chapter 3, "Programming Over RS-232C.,

Instructions (both commands and queries) normally appear as a string
embedded in a statement of your host language, such as BASIC, Pascal or
C. The only time a parameter is not meant to be expressed as a string is
when the instruction's slmta:r definition specifies < block data >. There

are only five instructions which use block data.

Instructions are composed of two main parts: The header, which specifies

the command or query to be sent; and the parameters, which provide
additional data needed to clarify the meaning of the instruction.

The instruction header is one or more keyvords separated by colons (:).

The command tree io figute dL illustrates how all the keyvords can be
joined together to form a complete header (see chapter 4, "Progranrming
and Documentation Conventionsn).

The example in figure 1-1 shows a commatrd. Queries are indicated by
addi"g a question mark (?) to the end of the header. Many instructions
can be used as either @mmands or queries, depending on whether or not
you have included the question mark. The command and query forms of
an instruction usually have different parameters. Many queries do not use

any pilameters.

When you look up a query in this programming reference, you'll find a

paragraph labeled "Returned Format" under the one labeled "Query
Slmta)r." The slmta,x definition by nReturned format" will always show the

instruction header in square brackets, like [:SYSTem:MENU]. What this

Introduction to Programming an lnstrument
1-3

Output Command The output command is entirely dependant on th;e language you choose to
use. Throughout this manual HP 9000 Series 2001300 BASIC 4.0 is used in
the programming examples. People using another language will need to
find the equivalents of BASIC commands like OUTPUT, ENTER and
CLEAR in order to convert the examples. The instructions for the
HP 1652B/53B are always shown between the double-quotes.

Device Address The location where the device address must be specified is also dependent
on the host language which you are using. In some languages, this could
be specified outside the output command. In BASIC, this is always
specified after the keyword OUTPUT. The examples in this manual use a
generic address of xxx. When writing programs, the number you use
will depend on the cable you use in addition to the actual address. If you
are using an HP-IB, see chapter 2. RS-232C users should refer to
chapter 3, "Programming Over RS-232C."

Instructions Instructions (both commands and queries) normally appear as a string
embedded in a statement of your host language, such as BASIC, Pascal or
C. The only time a parameter is not meant to be expressed as a string is
when the instruction's syntax defmition specifies < block data>. There
are only five instructions which use block data.

Instructions are composed of two main parts: The header, which specifies
the command or query to be sent; and the parameters, which provide
additional data needed to clarify the meaning of the instruction.

Instruction Header The instruction header is one or more keywords separated by colons (:).
The command tree in figure 4-1 illustrates how all the keywords can be
joined together to form a complete header (see chapter 4, "Programming
and Documentation Conventions").

The example in figure 1-1 shows a command. Queries are indicated by
adding a question mark (?) to the end of the header. Many instructions
can be used as either commands or queries, depending on whether or not
you have included the question mark. The command and query forms of
an instruction usually have different parameters. Many queries do not use
any parameters.

When you look up a query in this programming reference, you'll fmd a
paragraph labeled "Returned Format" under the one labeled "Query
Syntax." The syntax defmition by "Returned format" will always show the
instruction header in square brackets, like [:SYSTem:MENU]. What this

HP 16528/16538
Programming Reference

Introduction to Programming an Instrument
1-3

White Space

I nstruction Parameters

Header Types

Introduction to Prognmming an Instrument
1-4

really means is that the text between the brackets is optional, but it's also a
quick way to see what the header loolcs like.

White space is used to separate the instruction header from the
instruction ptrnmeters. If the instruction does not use any psrameters,
you do not need to include any white space. White space is defined as one
or more spaces. ASCII defines a space to be character 32 (n decimal).
Tabs can be used only if your controller first converts them to space

characters before sendirg the string to the instrtrment.

Instruction parameters are used to clariff the meaning of the command or
query. They provide necessary data" such as whether a function should be
on or off, which waveform is to be displayed, or which pattern is to be
looked for. Each instruction's slmtax definition shows the psrameters, as

well as the values they accept. fhis chapter's nParameter Spta,x Rules"
section has all of the general rules about acceptable values.

When there is more than one piuameter they are separated by
oommas (,). You are allowed to add spaces around the cotn-as.

There are three tlpes of headers: Simple Command; Compound
Command; and Co-mon Commattd.

Simple Command Header. Simple sommand headers contain a single
keyvord. START and STOP are examples of simple cornmand headers
t)?ically used in this instrument. The slmtax is:

< function > < terminator >

When pilameters (indicated by < data >) must be included with the
simple command header (for example, :RMODE SINGLE) the slmtax is:

<function> <white space> <data> <terminator>

Compound Command Header. Compound command headers are a
combination of nvo or more program keyvords. The fust keyvord selects

the subsystem, and the last keyword selects the function within that
subsystem. Sometimes you may need to list more than one subsystem

before being allowed to specify the function. The keyvords within the
compound header are separated by colons. For example:

To execute a single function within a subsystem, use the following:

HP 16s2Bl16s3B
Programming Relerence

really means is that the text between the brackets is optional, but it's also a
quick way to see what the header looks like.

White Space White space is used to separate the instruction header from the
instruction parameters. If the instruction does not use any parameters,
you do not need to include any white space. White space is defmed as one
or more spaces. ASCII defines a space to be character 32 (in decimal).
Tabs can be used only if your controller first converts them to space
characters before sending the string to the instrument.

Instruction Parameters Instruction parameters are used to clarify the meaning of the command or
query. They provide necessary data, such as whether a function should be
on or off, which waveform is to be displayed, or which pattern is to be
looked for. Each instruction's syntax definition shows the parameters, as
well as the values they accept. This chapter's "Parameter Syntax Rules"
section has all of the general rules about acceptable values.

When there is more than one parameter they are separated by
commas (,). You are allowed to add spaces around the commas.

Header Types There are three types of headers: Simple Command; Compound
Command; and Common Command.

Simple Command Header. Simple command headers contain a single
keyword. START and STOP are examples of simple command headers
typically used in this instrument. The syntax is:

< function> < terminator>

When parameters (indicated by < data>) must be included with the
simple command header (for example, :RMODE SINGLE) the syntax is:

< function> < white space> < data> < terminator>

Compound Command Header. Compound command headers are a
combination of two or more program keywords. The first keyword selects
the subsystem, and the last keyword selects the function within that
subsystem. Sometimes you may need to list more than one subsystem
before being allowed to specify the function. The keywords within the
compound header are separated by colons. For example:

To execute a single function within a subsystem, use the following:

Introduction to Programming an Instrument
1-4

HP 16528/16538
Programming Reference

: < subsyst€m > : <tunction > <white space > < data > <terminatgr >

(For example :SYSTEM:LONGFORM Ol9

To traverse doum a level of a subsystem to execute a subsptem within that
subsystem:

: < subs)/stgm > : < subs)Etem > : < func,tion > < whib gpac€ > < data > < terminetor >

(For exanple :MMEMORY:LOAD:CONFIG "FILE_")

Common Command Header. Common command headers control IEEE
,188.2 functions within the instrument (such as clear status, etc.). Their
slmtax is:

i<@mmand header > <tgrminator>

No space or separator is allowed between the asterisk and the command
header. *CIS is an exanple of a common command header.

Combining To execute more than one function within the same subslntem a
Commands lrom the semi-colon O is used to separate the functions:

Same Subsystem
: < gubslrstem > : < fu nction > < white spaca > < data > ;

<tunclion > <whlte space > < data > <terminator >

(For example :SYSTEM:LONGFORM ON;HEADER ON)

Duplicate Keyuvords Identical function keywords can be used for more than one subslrtem.
For example, the function kelvord MMODE maybe used to speci$the
marker mode in the subsystem for state listing or 1[s timing waveforms:

:SLIST:MMoDE PATIERN - sets the marker mode to pattern in the state
Iisting.

:TWAVEFoRM:MMoDETIME - sets the marker mode to time in ths timing
waveforms.

SLIST and TWAVEFORM are subsystem selectors and determine which
marker mode is being modified.

HP 16s28/16538
Programming Reference

Introduction to Programming an Instrument
1-5

Combining
Commands from the

Same Subsystem

: < subsystem> :< function> < white space> < data> < terminator>

(For example :SYSTEM:LONGFORM ON)

To traverse down a level of a subsystem to execute a subsystem within that
subsystem:

: < subsystem> :< subsystem> : < function> < white space> < data> < terminator>

(For example :MMEMORY:LOAD:CONFIG "FILE_")

Common Command Header. Common command headers control IEEE
488.2 functions within the instrument (such as clear status, etc.). Their
syntax is:

*< command header> < terminator>

No space or separator is allowed between the asterisk and the command
header. ·CLS is an example of a common command header.

To execute more than one function within the same subsystem a
semi-colon (;) is used to separate the functions:

: < subsystem> :< function> < white space> < data> ;

< function> < white space> < data> < terminator>

(For example :SYSTEM:LONGFORM ON;HEADER ON)

Duplicate Keywords Identical function keywords can be used for more than one subsystem.
For example, the function keyword MMODE may be used to specify the
marker mode in the subsystem for state listing or the timing waveforms:

:SLISf:MMODE PATTERN - sets the marker mode to pattern in the state
listing.

:1WAVEFORM:MMODE TIME - sets the marker mode to time in the timing
waveforms.

SLIST and TWAVEFORM are subsystem selectors and determine which
marker mode is being modified.

HP 16528/16538
Programming Reference

Introduction to Programming an Instrument
1-5

Query Usage Command headers immediately followed by a question mark (?) are
queries. After receiving a query the instrument interrogates the
requested function and places the response in its output queue. The
output message 1s6ains, in the queue until it is read or anotier conmand
is issued. When read the message is transmitted across the bus to the
designated listener (tpicdly a controller). For exanple, the logic
analyznr query :MACHINEI.:TWAVEFORM:RANGE? places the
current seconds per division full scale range for machine 1in the output
queue. In BASIC, the input statement

ENTER XXX; Range

passes the value across the bus to the controller and places it in the
variable Range.

Query commands are used to find out how the instrument is currently
configured. They are also used to get results of measurements made by
the instrument. For example, the command

: MACHINEl :TWAVEFORM: XOTIME?

instructs the instrument to place the X to O time in the output queue.

Note t$ The output queue must be read before the next program message is sent.
For example, when you send the query:TWAVEFORM:XOTIME? you
must follow that with an input statement. tn BASIC, this is usually done
with an ENTER statement.

Sending another command before reading the result of the query will
cause the output buffer to be cleared and the current response to be lost.
This wiil also generate a "QUERY UNTERMINATED" error in the
erTor queue.

Introduction to Programming an Instrument
1-6

HP 16s28/16538
Programming Reference

Query Usage Command headers immediately followed by a question mark (?) are
queries. After receiving a query, the instrument interrogates the
requested function and places the response in its output queue. The
output message remains in the queue until it is read or another command
is issued. When read, the message is transmitted across the bus to the
designated listener (typically a controller). For example, the logic
analyzer query :MACHINE1:TWAVEFORM:RANGE? places the
current seconds per division full scale range for machine 1 in the output
queue. In BASIC, the input statement

ENTER XXX; Range

passes the value across the bus to the controller and places it in the
variable Range.

Query commands are used to fmd out how the instrument is currently
confIgUred. They are also used to get results of measurements made by
the instrument. For example, the command

:MACHINEl:1WAVEFORM:XOTIME?

instructs the instrument to place the X to 0 time in the output queue.

I
Note II The output queue must be read before the next program message is sent.

For example, when you send the query :TWAVEFORM:XOTIME? you
must follow that with an input statement. In BASIC, this is usually done
with an ENTER statement.

Sending another command before reading the result of the query will
cause the output buffer to be cleared and the current response to be lost.
This will also generate a "QUERY UNTERMINATED" error in the
error queue.

Introduction to Programming an Instrument
1-6

HP 16528/16538
Programming Reference

Prognm Header Program headers can be sent using any combination of uppercase or
Options lowercase ASCII characters. Instrument responses, however, are alwap

returned in uppercase.

Both program command and query headers may be sent in either
longform (complete spellino), shortform (abbreviated spellino), or any
combination of longform and shortform. Either of the following examples
turns on the headers and longform.

OUTPUT XXX; " : SYSTEM: HEADER 0N ; LONGF0RM 0N"

OUTPUT XXX; " : SYST: HEAD 0N ; LONG 0N"

- longform

shortform

Note !!$

Parameter tl;|:X

Programs written in longform are easily read and are almost
self-documenting. The shortform syxtax conseryes the amount of
controller memory needed for program storage and reduces the amount
of I/O activity.

The rules for shortform slmta,x are shown in chapter 4 "Programming and
Documentation Conventions."

There are three main tlpes of data which are used in parameters. They
are numeric, strin& and keyvord. A foruth t1pe, block data, is used only
for five instructions: the DATA and SETup instructions in the SYSTem
subsystem (see chapter 6); the CATalog, UPLoad, and DOWNload
instructions in the MMEMory subsystem (see chapter 7). These slmtax
rules also show how data may be formatted when sent back from the
HP L652B|53B as a response.

The piuameter list always follows the instruction header and is separated
from it by white spa@. When more than one parameter is used, they are
sepuuated by commas. You are allowed to include one or more spaces
around the commas, but it is not mandatory.

Introduction to Programming an Instrument
1-7

HP 16528/16538
Programming Reference

Program Header
Options

Program headers can be sent using any combination of uppercase or
lowercase ASCII characters. Instrument responses, however, are always
returned in uppercase.

Both program command and query headers may be sent in either
longform (complete spelling), shortform (abbreviated spelling), or any
combination of longform and shortform. Either of the following examples
turns on the headers and longform.

OUTPUT XXX;":SYSTEM:HEADER ON;LONGFORM ON"
OUTPUT XXX;":SYST:HEAD ON;LONG ON"

- longform

- shortform

I
Note t;I

Parameter Syntax
Rules

HP 16528/16538
Programming Reference

Programs written in longform are easily read and are almost
self-documenting. The shortform syntax conserves the amount of
controller memory needed for program storage and reduces the amount
of I/O activity.

The rules for shortform syntax are shown in chapter 4 "Programming and
Documentation Conventions."

There are three main types of data which are used in parameters. They
are numeric, string, and keyword. A fourth type, block data, is used only
for five instructions: the DATA and SETup instructions in the SYSTem
subsystem (see chapter 6); the CATalog, UPLoad, and DOWNload
instructions in the MMEMory subsystem (see chapter 7). These syntax
rules also show how data may be formatted when sent back from the
HP 1652B/53B as a response.

The parameter list always follows the instruction header and is separated
from it by white space. When more than one parameter is used, they are
separated by commas. You are allowed to include one or more spaces
around the commas, but it is not mandatory.

Introduction to Programming an Instrument
1-7

Numeric data. Foi numeric data, you have the option of using
exponential notation or using suffixes to indicate which unit is being used.
Tables A-1 and A-2 io appendix A list all available suffixes. Do not
combine an exponent with a unit. The following nu'rtbers iue all equal:
?A :0.?3F;2:280e-1 :28000m:0.028K

The base of a number is shown with a prefix The available bases iue
biouty (#B), octal (#Q), hexadecimal (#H) and decimal (default). For
e:rample, #811100 : #Qy : #}IIC : ?3. You may not specify a

base in conjunction with either exponents or unit suffixes. Additionally,
negative numbers must be expressed in decimal.

When a slmtatr defrnition specifies that a number is an inteEet,that means
that the number should be whole. Any fractional part would be ignored,
truncating the number. Nu-eric parameters which accept fractional
values are called real numbers.

All numbers are e4pected to be sfiings of ASCU characters. Thus, when
sendi.g the number 9, you would send a byte representing the ASCII code
for the character "9" (which is 57, or 0011, 1001 in binary). A three-digt
number like I02 would take up three bytes (ASCII codes 49,8 and 50).
This is taken care of automatically when you include the entire instruction
in a string.

String data. Sttiog data may be delimited with either single (') ot double
(") quotes. String p&rameters representi.g labels iue case-sensitive. For
instance, the labels nBus An and "bus a" are unique and should not be used
indiscriminately. Also pay attention to the presence of spaces, since they
act as legal characters just like any other. So the labels nln" and u In" iue
also two separate labels.

Kepvord data. In many cases a parameter must be a keyvord. The
available keyvords are always included with the instruction's slmtan
definition. When sendirg commands, either the longfonn or shortform (if
one exists) may be used. Upper-case and lower-case letters may be mixed
freely. When receiving responses, upper-case letters will be used
exclusively. The use of longfonn or shortform in a response depends on
the setting you last specified via the SYSTem:LONGform command (see

chapter 6).

Introduction to Programming an Instrument
1-8

HP 16529,/16538
Programming Reference

Numeric data. Fo; numeric data, you have the option of using
exponential notation or using suffixes to indicate which unit is being used.
Tables A-I and A-2 in appendix A list all available suffixes. Do not
combine an exponent with a unit. The following numbers are all equal:
28 = 0.28E2 = 280e-1 = 28000m = 0.028K.

The base of a number is shown with a prefIX. The available bases are
binary (#B), octal (#0), hexadecimal (#H) and decimal (default). For
example, #B11100 = #034 = #H1C = 28. You may not specify a
base in conjunction with either exponents or unit suffIXes. Additionally,
negative numbers must be expressed in decimal.

When a syntax defmition specifies that a number is an integer, that means
that the number should be whole. Any fractional part would be ignored,
truncating the number. Numeric parameters which accept fractional
values are called real numbers.

All numbers are expected to be strings of ASCII characters. Thus, when
sending the number 9, you would send a byte representing the ASCII code
for the character "9" (which is 57, or 00111001 in binary). A three-digit
number like 102 would take up three bytes (ASCII codes 49,48 and 50).
This is taken care of automatically when you include the entire instruction
in a string.

String data. String data may be delimited with either single (') or double
(") quotes. String parameters representing labels are case-sensitive. For
instance, the labels "Bus A" and "bus a" are unique and should not be used
indiscriminately. Also pay attention to the presence of spaces, since they
act as legal characters just like any other. So the labels "In" and" In" are
also two separate labels.

Keyword data. In many cases a parameter must be a keyword. The
available keywords are always included with the instruction's syntax
defmition. When sending commands, either the longform or shortform (if
one exists) may be used. Upper-case and lower-case letters may be mixed
freely. When receiving responses, upper-case letters will be used
exclusively. The use of longform or shortform in a response depends on
the setting you last specified via the SYSTem:LONGform command (see
chapter 6).

Introduction to Programming an Instrument
1-8

HP 16528/16538
Programming Reference

lnstruclion Terminator An instruction is executed after the instruction terminator is received.
The terminator is the NL (New Line) character. The NL character is an
ASCII finefeed character (decinal 10).

ilA The NL (NewLine) terminator has the sane function as an EOS (End Of
NOte It Stdng) and EOT (End Of Text) terminator.

Selecting Multiple You can send multiple program com-ands and program queries for
Subsystems different subsystems on the same line by separating each command with a

semicolon. The colon following the semicolon enables you to enter a new
subsystem. For example:

< instruction header > < data > :: < instruction header > < data > <terminator >

td Mdtiple commands maybe any combination of simple, compound and
NOtg t cornmon comtttancis.

HP 16528/16s38
Programming Reference

Introduction to Programming an Instrument
1-g

Instruction Terminator

I
Note"

Selecting Multiple
SUbsystems

I
Note"

HP 16528/16538
Programming Reference

An instruction is executed after the instruction terminator is received.
The terminator is the NL (New Line) character. The NL character is an
ASCII linefeed character (decimal 10).

The NL (New Line) terminator has the same function as an EOS (End Of
String) and EOT (End Of Text) terminator.

You can send multiple program commands and program queries for
different subsystems on the same line by separating each command with a
semicolon. The colon following the semicolon enables you to enter a new
subsystem. For example:

< instruction header> < data> ;: < instruction header> < data> < terminator>

:MACHINE1:ASSIGN2;:SYSTEM:HEADERS ON

Multiple commands may be any combination of simple, compound and
common commands.

Introduction to Programming an Instrument
1-9

Programming
an Instrument

Initialization To make sure ttre bus andall appropriate interfaces are in a known state,
begin every program with an initidization statement. BASIC provides a
CLEAR command which clears the interface buffer. If you're using
IIP-IB, CLEAR will also reset the HP 16528/53B's parser. The parser is
the prograna which reads in the instructions which you send it.

After clearing the interface, load a predefined configuration file from the
disk to preset the instrument to a known state. For example:

OUTPUT XXX; " : l'lt'|EM0RY : L0AD: CONFIG 'DEFAULT "T

This BASIC statement would load the configuration file "DEFAULT_*
(if it exists) into the HP L652B'1538. Refer to the chapter "MMEMory
Subsystem" for more information on the LOAD command.

Note
Refer to your controller manual and programming language reference
manual for information on ffifiali"ing the interface.

Introdustion to Programming an Instrument
1-10

HP 16s28/16s38
Programming Reference

Programming
an Instrument

Initialization To make sure the bus and all appropriate interfaces are in a known state,
begin every program with an initialization statement. BASIC provides a
CLEAR command which clears the interface buffer. If you're using
HP-IB, CLEAR will also reset the HP 1652B/53B's parser. The parser is
the program which reads in the instructions which you send it.

After clearing the interface, load a predefmed configuration file from the
disk to preset the instrument to a known state. For example:

OUTPUT XXX;": MMEMORY: LOAD: CONFIG 'DEFAULT_ '"

This BASIC statement would load the configuration file "DEFAULT_"
(if it exists) into the HP 1652B/53B. Refer to the chapter "MMEMory
Subsystem" for more information on the LOAD command.

I
Note"

Refer to your controller manual and programming language reference
manual for information on initializing the interface.

Introduction to Programming an Instrument
1-10

HP 16528/16538
Programming Reference

Example Prognm

Program Overview

Receiving Information
from the lnstrument

HP 16528/16538
Programming Relerence

10 CLEAR XXX

20 OUTPUT XXX ; " : SYSTET'I: HEADER 0N"

30 OUTPUT XXX ; " : SYSTET'I: L0NGFORM 0N"

40 0UTPUT XXX; ":l'lilEl{: L0AD:CONFIG'TEST

50 OUTPUT XXX ; " : I''IENU F0Rl,lAT , 1"

60 0UTPUT XXX;":Rl'l0DE SII{GLE"

70 OUTPUT XXX; ": START"

! Initial ize instrument interface
! Turn headers on

! Turn longform on

E "' ! Load conf i gu rat i on f i 'le

!Select Format menu for machine 1

!Select run mode

! Run the measurement

This program demonstrates the basic command structure used to program
the HP L6528/53B.

Line f0 initiali-es the instnrment interface to a known state
Lines 20 and 30 ttrrn the headers and longform on.
Line 40 loads the confrguration file 'TEST_E* from the disc drive.
Line 50 displays the Format menu for maghins l.
Lines 60 and 70 tell the analper to run the measruement configured by
the file "TEST_E" one time.

After receiving a query (co--and header followed by a question mark),
the instrument interrogates the requested function and places the answer
in its output queue. The answer remains in the output queue until it is
read or another command is issued. When rea4 the message is
transmitted across the bus to the designated listener (typically a
controller). The input statement for receiving a response message from
an instru'nent's output queue tlpically has two p&rameters;the device
address and a format specification for handling the response message.
For example, to read the result of the quor! command
:SYSTEM:LONGFORM? you could execute the BASIC statement:

ENTER)COq Setting

where XXX represents the address of your device. This would enter the
cturent setting for the longform command in the numeric variable Setting.

Introduction to Programming an lnstrument
1-1 1

Example Program This program demonstrates the basic command structure used to program
the HP 1652B/53B.

10 CLEAR XXX !Initialize instrument interface
20 OUTPUT XXX;":SYSTEM:HEADER ON" !Turn headers on
30 OUTPUT XXX;":SYSTEM:LONGFORM ON" !Turn longform on
40 OUTPUT XXX;":MMEM:LOAD:CONFIG 'TEST_E'" !Load configuration file
50 OUTPUT XXX;":MENU FORMAT,I" !Select Format menu for machine 1
60 OUTPUT XXX;":RMODE SINGLE" !Select run mode
70 OUTPUT XXX;":START" !Run the measurement

Program Overview

Receiving Information
from the Instrument

HP 16528/16538
Programming Reference

tine 10 initializes the instrument interface to a known state
tines 20 and 30 turn the headers and longform on.
Line 40 loads the configuration fIle "TEST_E" from the disc drive.
Line SO displays the Format menu for machine 1.
Lines 60 and 70 tell the analyzer to run the measurement configured by
the ftIe "TEST E" one time.

After receiving a query (command header followed by a question mark),
the instrument interrogates the requested function and places the answer
in its output queue. The answer remains in the output queue until it is
read or another command is issued. When read, the message is
transmitted across the bus to the designated listener (typically a
controller). The input statement for receiving a response message from
an instrument's output queue typically has two parameters;the device
address and a format specification for handling the response message.
For example, to read the result of the query command
:SYSTEM:LONGFORM? you could execute the BASIC statement:

ENTER XXX; Setting

where XXX represents the address of your device. This would enter the
current setting for the longform command in the numeric variable Setting.

Introduction to Programming an Instrument
1-11

. il-* All results for queries sent in a program message must be read before
NoIg It another progam message is sent. For example, when you send the query

:MACHINEI.:ASSIGN?, you must follow that query with an input
statement. In BASIC, this is usually done with an ENTER statement.

The format specification fs1 fuan'lling the response messages is dependent
on both the controller and the programrning language.

Response Header The format of the returned ASCtr string depends on the current ssttings
Options of the SYSTEM HEADER and LONGFORM commands. The general

format is:

< instruction header> < space > < data > <terminator >

The header identifies the data that follows (the pirameters) and is
controlled by issuing a :SYSTEM:HEADER ON/OFF command. If the
state of the header command is OFF, only the data is returned by the
query.

The format of the header is controlled by the :SYSTEM:LONGFORM
ON/OIiF command. If longform is OFF , the header wiU be in its
shortform and the header will vary in length dependirg on the particular
query. The separator between the header and the data always consists of
one space.

The following examples show some possible responses for a

: IvIACHINE 1. : SFORMAT:THRESH OLD 2? query

o withHEADER OFF:
< data > < terrninator >

o withHEADER ONandLONGFORM OFF:
:MACHI :SFOR:THR2 < space > <data > <terminator >

o withHEADER ONandLONGFORM ON:
:MACHINEI :SFORMAT:THRESHOLD2 < spaoa > < data > <terminator >

lntroduction to Programming an Instrument
1-12

HP 16528/16538
Programming Reference

I
Note _

Response Header
Options

All results for queries sent in a program message must be read before
another program message is sent. For example, when you send the query
:MACHINEl:ASSIGN?, you must follow that query with an input
statement. In BASIC, this is usually done with an ENTER statement.

The format specification for handling the response messages is dependent
on both the controller and the programming language.

The format of the returned Ascn string depends on the current settings
of the SYSTEM HEADER and LONGFORM commands. The general
format is:

< instruction header> < space> < data> < terminator>

The header identifies the data that follows (the parameters) and is
controlled by issuing a :SYSTEM:HEADER ON/OFF command. If the
state of the header command is OFF, only the data is returned by the
query.

The format of the header is controlled by the :SYSTEM:LONGFORM
ON/OFF command. If longform is OFF , the header will be in its
shortform and the header will vary in length depending on the particular
query. The separator between the header and the data always consists of
one space.

The following examples show some possible responses for a
:MACHINEl:SFORMAT:THRESHOLD2? query:

• with HEADER OFF:
< data> < terminator>

• with HEADER ON and LONGFORM OFF:
:MACH1:SFOR:THR2 <space> <data> <terminator>

• with HEADER ON and LONGFORM ON:
:MACHINE1:SFORMAT:THRESHOLD2 <space> <data> <terminator>

Introduction to Programming an Instrument
1-12

HP 16528/16538
Programming Reference

Note llf,
A command or query may be sent in either longform or shortform, or in
any combination of longform and shortfonn. The HEADER and
LONGFORM commands only control the format of the returned data
and have no effect on the way commands are sent.

Refer to the chapter "System Commands" for information on turning the
HEADER and LONGFORM commands on and off.

Response Data Bottr numbers and strings are returned as a series of ASCII characters, as

Formats described in the following sections. Keywords in the data are returned in
the sr-e format as the header, as specified by the LONGform command.
Like the headers, the keywords will always be in upper-case.

The following are possible responses to the "MACHINEI: TFORMAT:
I-AB? 'ADDR'n query.

MACHINE1 :TFORMAT:IIBEL "ADDR ",19,POS|T|VE < terminator > (Header on;

longlorm on)

MACH1 :TFOR:LAB'ADDR ",19,POS<terminator > (Header on; Longform otf)

'ADDR ",19,POS[TN/E<terminator> (Header off; Longform on)

"ADDR ',19,POS < terminator > (Header off ; Longform otf)

,lA Refer to the individual co--ands in this manual for information on the
Notg ia format (alpha or numeric) of the data returned from each query.

HP 16528/16538
Programming Reference

Introduction to Programming an lnstrument
1-1 3

Note '"

Response Data
Formats

I
Note 1;1

HP 16528/16538
Programming Reference

A command or query may be sent in either longform or shortform, or in
any combination of longform and shortform. The HEADER and
LONGFORM commands only control the format of the returned data
and have no effect on the way commands are sent.

Refer to the chapter "System Commands" for information on turning the
HEADER and LONGFORM commands on and off.

Both numbers and strings are returned as a series of ASCII characters, as
described in the following sections. Keywords in the data are returned in
the same format as the header, as specified by the LONGform command.
Like the headers, the keywords will always be in upper-case.

The following are possible responses to the "MACHINE1: TFORMAT:
LAB? 'ADDR'" query.

MACHINE1 :TFORMAT:LABEL tlADOR /I, 19,POSITIVE < terminator> (Header on;

Longform on)

MACH1:TFOR:LAB "ADOR ",19,POS<terminator> (Header on; Longform off)

"ADOR ",19,POSITIVE<terminator> (Header off; Longform on)

"ADOR ",19,POS<terminator> (Header off; Longform off)

Refer to the individual commands in this manual for information on the
format (alpha or numeric) of the data returned from each query.

Introduction to Programming an Instrument
1-13

String Variables Since there are so rnanyways to code numbers, the HP 16528/538
handles alnost all data as ASCII strings. Depending on your host
language, you may be able to use other tlpes when 16'ling in responses.

Sometines it is helpful to use string variables in place of constants to send
instructions to the HP 165281538. The example below combines variables
and constants in order to make it easier to switch from MACHINE1 to
MACHINE2. In BASIC, the & operator is used for string concatenation.

l0 LET lilachine$ = ":MACHINE2" lSend alI instructions to machine 2

20 OUTPUT XXX; ilachine$ & ":TYPE STATE" lMake machine a state analyzer
30 ! Assign all labels to be positive
40 0UTPUT XXX; l,lachine$ & ":SFORMAT:LABEL 'CHAN 1', P0S"

50 OUIPUT XXX; l,lachine$ & ":SF0R||AT:LABEL 'CHAN 2', P0S"

60 OUTPUT XXX; Hachine$ & ":SF0RI'|AT:LABEL '0UT'. POS"

99 END

If you want to observe the headers for queries, you must bring the
returned data into a string variable. Reading queries into string variables
requires little attention to formatting. For example:

ENTER XXX; Resu lt$

places the output of the query in the string variable Result$.

,td h the language used for this book (HP BASIC 4.0), stringvariables are
NOte = case sensitive and must be expressed exactly the same each time they are

used.

The output of the instrument may be numeric or character data
depending on what is queried. Refer to the specific commands for the
formats and tlpes of data returned from queries.

Introdustion to Programming an Instrument
1-14

HP 16528/16538
Programming Reference

String Variables Since there are so many ways to code numbers, the HP 1652B/53B
handles almost all data as ASCII strings. Depending on your host
language, you may be able to use other types when reading in responses.

Sometimes it is helpful to use string variables in place of constants to send
instructions to the HP 1652B/53B. The example below combines variables
and constants in order to make it easier to switch from MACHINE1 to
MACHINE2. In BASIC, the & operator is used for string concatenation.

10 LET Machine$ = ":MACHINE2" !Send all
20 OUTPUT XXX; Machine$ &":TYPE STATE"
30 ! Assign all labels to be positive
40 OUTPUT XXX; Machine$ &":SFORMAT:LABEL
50 OUTPUT XXX; Machine$ &":SFORMAT:LABEL
60 OUTPUT XXX; Machine$ &":SFORMAT:LABEL
99 END

instructions to machine 2
!Make machine a state analyzer

'CHAN 1', POS"
'CHAN 2', POS"
'OUT r, POS"

Note.

If you want to observe the headers for queries, you must bring the
returned data into a string variable. Reading queries into string variables
requires little attention to formatting. For example:

ENTER XXX;Result$

places the output of the query in the string variable ResultS.

In the language used for this book (HP BASIC 4.0), string variables are
case sensitive and must be expressed exactly the same each time they are
used.

The output of the instrument may be numeric or character data
depending on what is queried. Refer to the specific commands for the
formats and types of data returned from queries.

Introduction to Programming an Instrument
1-14

HP 16528/16538
Programming Reference

The following exanple shour logic analyzer data being returned to a
string variable with headers off:

l0 0UTPUT)OX;":SYSTEII:HEADER 0FF"

20 DIil Rang$[30]

30 OUTPUT XXX ; " : I'IACH I tlEl : TI/AVEFORi,| : RAIIGE?"

40 EI{TER XXX;Rang$

50 PRINT Rang$

60 END

fiftsl yunning this program, the controller displap:

+ 1.000008-05

Numeric Base Most numeric data will be returned in the same base as shown on screen.
When the prefix #B precedes the returned dat4 the value is in the binary
base. Likewise, #Q is the octal base and #H is the hexadecinal base. If
no prefx precedes the returned n'meric dat4 then the value is in the
decimal base.

Numeric Variables If your host language can convert from ASCII to a n'meric format, then
you can use ntt-eric variables. Turning off the response headers will help
you avoid accidently trying to convert the header into a number.

The following example shows logic analper data being returned to a
n"meric variable.

l0 0UTPUT XXX:":SYSTEII:HEADER OFF"

20 OUTPUT XXX ; " : MACHI NE I : TIJAVEF0R|I : RANGE?"

30 ENTER XXX;Rang

40 PRII{T Rang

50 Er{D

This time the format of the number (such as whether or not exponential
notation is used) is dependant upon your host language. In BASIC, the
output would look like:

1.E,-5

HP 1652B,/16538
Programming Relerence

Introduction to Programming an Instrument
1-1 5

The following example shows logic analyzer data being returned to a
string variable with headers off:

10 OUTPUT XXX;":SYSTEM:HEADER OFF"
20 DIM Rang$ [30]
30 OUTPUT XXX;":MACHINEl:TWAVEFORM:RANGE?"
40 ENTER XXX;Rang$
50 PRINT Rang$
60 END

After running this program, the controller displays:

+1.00000E-05

Numeric Base Most numeric data will be returned in the same base as shown on screen.
When the prefIX #B precedes the returned data, the value is in the binary
base. Likewise, #0 is the octal base and #H is the hexadecimal base. If
no prefIX precedes the returned numeric data, then the value is in the
decimal base.

Numeric Variables If your host language can convert from ASCII to a numeric format, then
you can use numeric variables. Turning off the response headers will help
you avoid accidently trying to convert the header into a number.

The following example shows logic analyzer data being returned to a
numeric variable.

10 OUTPUT XXX;":SYSTEM:HEADER OFF"
20 OUTPUT XXX;":MACHINEl:TWAVEFORM:RANGE?"
30 ENTER XXX;Rang
40 PRINT Rang
50 END

This time the format of the number (such as whether or not exponential
notation is used) is dependant upon your host language. In BASIC, the
output would look like:

1.E-5

HP 1652B/16538
Programming Reference

Introduction to Programming an Instrument
1-15

Delinitelcngth Block DefiniteJength block response data allows any g/pe of device-dependent
Response Data data to be transmitted over the system interface as a series of 8-bit binary

data bytes. This is particularly useil for ssnding large quantities of data '

or 8-bit extended ASCII codes. The syntax is a pound srgn (#) followed
by a non-zero digit represelting the number of digits in the decimal
integer. After the non-zero digt is the decimal integer that states the
number of 8-bit data bytes being sent. This is followed bythe actual data.

For exanple, for transmitting 80 bytes of data, the syntax would be:

NUMBER OF DIGITS
THAT FOLLOW

ACTUAL DATA

tf80O0QA080<ei ghty bytes of doto><termi notor>
\rJ.\A=t

NUMBER OF BYTES
TO BE TRANSMI TTED

Figure 1-2. Definite-length Block Response Data

The "8" states the number of digits that follow, and u00000080" states the
nu'nber of bytes to be transmitted.

Note
Indefinite-length block data is not supported on the HP1652B|53B.

t65eo/BL??

Introduction to Programming an Instrument
1-1 6

HP 16s28/16538
Programming Reference

ACTUAL DATA

r~--.........--~A ~

Definite-Length Block
Response Data

Definite-length block response data allows any type of device-dependent
data to be transmitted over the system interface as a series of 8-bit binary
data bytes. This is particularly useful for sending large quantities of data'
or 8-bit extended Ascn codes. The syntax is a pound sign (#) followed
by a non-zero digit representing the number of digits in the decimal
integer. After the non-zero digit is the decimal integer that states the
number of 8-bit data bytes being sent. This is followed by the actual data.

For example, for transmitting 80 bytes of data, the syntax would be:

NUMBER OF DIGITS
THAT FOLLOW

/
#800000080<eighty bytes of data><terminator>
~

NUMBER OF BYTES
TO BE TRANSMITTED

Figure 1-2. Definite-length Block Response Data

165~0/BL22

I
Note 'I

The "8" states the number of digits that follow, and "o00ooo80" states the
number of bytes to be transmitted.

Indefmite-Iength block data is not supported on the HP1652B/53B.

Introduction to Programming an Instrument
1-16

HP 16528/16538
Programming Reference

Multiple Queries You can send multiple queries to the instrument within l s,ingle program
message, but you must also read them bagk within 3 singls progrem
message. This can be accomplished by either reading them back into a
string variable or into multiple numeric variables. For exanple, you could
read the result of the query:SYSTEM:HEADER?;LONGFORM? into
the string variable Results$ with the command:

ENTER XXX; Results$

When you read the result of multiple queries into string variables, each
response is separated by a semicolon. For example, the response of the
query :SYSTEM:HEADER? :LONGFORM? with HEADER and
IJONGFORM onwouldbe:

:SYSTEM:HEADER 1 ;:SYSTEM:LONGFORM 1

Ifyou do not need to see the headers when the nu'neric values are
returne4 then you could use following program message to read the query
:SYSTEM:HEADERS ? ;LONGFORM ? into multiple n'm eric variables:

ENTER XXX; Resultl, Result2

Note il$
When you :ue receiving numeric data into numeric variables, the headers
should be turned off. Otherwise the headers may cause misinterpretation
of returned data.

Introduction to Programming an lnstrument
1-17

Instrument Status Status registers track the current status of the instrument. By checking the
instlment status, you can find out whether an operation has been
completed, whether the instrument is receiving triggers, and more.
Appendix B, "Status Reporting,n explains how to check the status of tle
instrment.

HP 16528/16538
Programming Relerence

Multiple Queries You can send multiple queries to the instrument within a single program
message, but you must also read them back within a single program
message. This can be accomplished by either reading them back into a
string variable or into multiple numeric variables. For example, you could
read the result of the query :SYSTEM:HEADER?;LONGFORM? into
the string variable Results$ with the command:

ENTER XXX; Results$

When you read the result of multiple queries into string variables, each
response is separated by a semicolon. For example, the response of the
query :SYSTEM:HEADER?:LONGFORM? with HEADER and
LONGFORM on would be:

:SYSTEM:HEADER 1;:SYSTEM:LONGFORM 1

If you do not need to see the headers when the numeric values are
returned, then you could use following program message to read the query
:SYSTEM:HEADERS?;LONGFORM? into multiple numeric variables:

ENTER XXX; Result!, Result2

I
Note II

Instrument Status

HP 16528/16538
Programming Reference

When you are receiving numeric data into numeric variables, the headers
should be turned off. Otherwise the headers may cause misinterpretation
of returned data.

Status registers track the current status of the instrument. By checking the
instrument status, you can fmd out whether an operation has been
completed, whether the instrument is receiving triggers, and more.
Appendix B, "Status Reporting," explains how to check the status of the
instrument.

Introduction to Programming an Instrument
1-17

N
IOr

d-do-(ct
-rA+qt
!I
a-

-

I

E=.
5

GT

N
I

O-c< ""'I
CD 0
""'ICC

::J:;;
-:03
tji3

:r
CQ

Programming Over HP-IB

lntroduction This section describes the interface functions and some general concepts
of the HP-IB. In general, these functions are defined by IEEE 488.1
(HP-IB bus standard). They deal with general bus management issues, as

well :rs messages which can be sent over the bus as bus comm6d5.

Interface
Capabilities

The interface capabilities of the HP L652F'1538, as defined by IEEE 488.L
are SHL AH1, T5, TE0, IJ, LEO, SRl, RLL, PP0, DCl, DTL, C0, and F;2.

Command and
Data Concepts

The HP-IB has two modes of operation: command mode and data mode.
The bus is in @mmand mode when the ATN line is true. The command
mode is used to send tdk and listen addresses and various bus co--ands,
such as a group execute trigger (GET). The bus is in the data mode when
the ATN line is false. The data mode is used to convey device-dependent
messages across the bus. These device-dependent messages include all of
the instrument @mmands and responses found in chapters 5 througb 27
of this manual.

Addressing

HP 16s28/16s38
Programming Reference

By using the front-panel I/O and SELECT keys, the HP-IB interface can
be placed in either talk only mode "Printer @nnected to HP-IB" or
addressed talMisten mode "Controller connected to HP-IB" (see "I/O
Port Confrguration" in Chapter 5 of the I/P 1652B|HP 16538 Front-Panel
Reference manual. Talk only mode must be used when you want the
instrument to tdk directly to a printer without the aid of a controller.
Addressed talMisten mode is used when the instrument will operate in
conjunction with a controller. When the instruqrent is in the addressed
talMisten mode, the following is true:

o Each device on the HP-IB resides at a particular address ranging
from 0 to 30.

o The active controller specifies which devices will talk, and which
will listen.

o An instrument, therefore, may be talk addressed, listen addressed,
or unaddressed bv the controller.

Programming Over HP-IB
2-1

Programming Over HP-IB 2
Introduction

Interface
Capabilities

Command and
Data Concepts

Addressing

This section describes the interface functions and some general concepts
of the HP-IB. In general, these functions are defmed by IEEE 488.1
(HP-IB bus standard). They deal with general bus management issues, as
well as messages which can be sent over the bus as bus commands.

The interface capabilities of the HP 1652B/53B, as dermed by IEEE 488.1
are SHI, AHI, T5, TEO, L3, LEO, SRI, RLI, PPO, DCI, DTI, CO, and E2.

The HP-IB has two modes of operation: command mode and data mode.
The bus is in command mode when the ATN line is true. The command
mode is used to send talk and listen addresses and various bus commands,
such as a group execute trigger (GET). The bus is in the data mode when
the ATN line is false. The data mode is used to convey device-dependent
messages across the bus. These device-dependent messages include all of
the instrument commands and responses found in chapters 5 through 27
of this manual.

By using the front-panel I/O and SELECf keys, the HP-IB interface can
be placed in either talk only mode "Printer connected to HP-IB" or
addressed talkllisten mode "Controller connected to HP-IB" (see "I/O
Port ConftgUl"ation" in Chapter 5 of the HP 1652B/HP 1653B Front-Panel
Reference manual. Talk only mode must be used when you want the
instrument to talk directly to a printer without the aid of a controller.
Addressed talkllisten mode is used when the instrument will operate in
conjunction with a controller. When the instrument is in the addressed
talkllisten mode, the following is true:

HP 16528/16538
Programming Reference

•

•

•

Each device on the HP-IB resides at a particular address ranging
from °to 30.
The active controller specifies which devices will talk, and which
will listen.
An instrument, therefore, may be talk addressed, listen addressed,
or unaddressed by the controller.

Programming Over HP-18
2-1

If the controller addresses the instru*ent to tallq it will remair configured
to talk until it receives an interface clear message (IFC), another
instrument's talk address (OTA), its own listen address (MLA), or a
r niversal untalk (UI.IT) command.

If the controller addresses the instrument to listen, it will remein
configired to listen until it receives an interface clear message (IFC) its
own talk address (MTA), or a uttiversal unlisten (UNL) co--and.

Communicating
Over the HP-IB
Bus (HP 9000
Series 2OOl300
Controller)

Since HP-IB can address multiple devices through the same interface
card, the device address passed with the program message must include
not only the correct instrument address, but also the correct interface
code.

Interface Select Code (Selects Interface). Each interface card has its own
interface select code. This code is used by the controller to direct
commands and communications to the proper interface. The default is
always n7" for HP-IB controllers.

Instnrment Address (Selects Instrument). Each instrument on the
HP-IB port must have a unique instrument address between decimal 0
and 30. The device address passed with the program message must
include not only the correct instrument address, but also the correct
interface select code.

DEvtCE ADDRESS = (lnterfae Setect Code) x 100 + (tnstrument Address)

For exrmple, if the instrument address for the HP L652B153B is 4 and the
interface select code is 7, when the program message is passed, the
routine performs its function on the instrument at device address 7M.

Local, Remote,
and Local
Lockout

Programming Over HP-IB
2-2

The local, remote, ild remote with local lockout modes may be used for
various degrees of front-panel control while a program is running. The
instrument will accept and execute bus commands while in local mode,
and the front panel will also be entirely active. If the HP L652B|53B is in
remote mode, the instrument will go from remote to local with any front
panel activiry. In remote with local lockout mode, all controls (except the
power switch) ate entirely locked out. Local control can only be restored
by the controller.

HP 16528/16s38
Programming Reference

Communicating
Over the HP-IB
Bus (HP 9000
Series 200/300
Controller)

Local, Remote,
and Local
Lockout

Programming Over HP-IB
2-2

If the controller addresses the instrument to talk, it will remain configured
to talk until it receives an interface clear message (IFC), another
instrument's talk address (OTA), its own listen address (MLA), or a
universal untalk (UNT) command.

If the controller addresses the instrument to listen, it will remain
configured to listen until it receives an interface clear message (IFC) its
own talk address (MTA), or a universal unlisten (UNL) command.

Since HP-IB can address multiple devices through the same interface
card, the device address passed with the program message must include
not only the correct instrument address, but also the correct interface
code.

Interface Select Code (Selects Interface). Each interface card has its own
interface select code. This code is used by the controller to direct
commands and communications to the proper interface. The default is
always "7" for HP-IB controllers.

Instrument Address (Selects Instrument). Each instrument on the
HP-IB port must have a unique instrument address between decimal 0
and 30. The device address passed with the program message must
include not only the correct instrument address, but also the correct
interface select code.

DEVICE ADDRESS = (Interface Select Code) X 100 + (Instrument Address)

For example, if the instrument address for the HP 1652B/53B is 4 and the
interface select code is 7, when the program message is passed, the
routine performs its function on the instrument at device address 704.

The local, remote, and remote with local lockout modes may be used for
various degrees of front-panel control while a program is running. The
instrument will accept and execute bus commands while in local mode,
and the front panel will also be entirely active. If the HP 1652B/53B is in
remote mode, the instrument will go from remote to local with any front
panel activity. In remote with local lockout mode, all controls (except the
power switch) are entirely locked out. Local control can only be restored
by the controller.

HP 16528/16538
Programming Reference

- tlll CYcling the power will also restore tocal contro! but this will also reset
NOtg It cerrain HP-IB stares.

The instrument is placed in remote mode by setting the REN (Remote
Enable) bus control line true, and then addressing the instrument to
listen. The instrument can be placed in local lockout mode by sending the
local lockout (LLO) command (see SYSTem:LOCKout in chapter 6).
The instrument can be returned to local mode by either setting the REN
line false, or sending the instrrlment the go to local (GTL) command.

Bus Commands

Device Clear

Group Execute
Trigger (GET)

Interface Clear (lFC)

HP 16528/16538
Programming Reference

The following commands are IEEE 488.L bus commands (ATN true).
IEEE 488.2 defines many of the actions which are taken when these
commands are received by an instrument.

The device clear (DCL) or selected device clear (SDC) commands clear
the input and output buffers, reset the parser, clear any pending
commands, and clear the Request-OPC flag.

The group execute trigger command will cause the same action as the
START command for Group Run: the instrument will acquire data for
the active waveform and listing display(s).

This command halts all bus activity. This includes unaddressing all
listeners and the talker, disablirg serial po[on all devices, and returning
control to the svstem controller.

Programming Over HP-IB
2-3

I

Note '"

Bus Commands

Device Clear

Group Execute
Trigger (GET)

Interface Clear (IFC)

HP 16528/16538
Programming Reference

Cycling the power will also restore local control, but this will also reset
certain HP-IB states.

The instrument is placed in remote mode by setting the REN (Remote
Enable) bus control line true, and then addressing the instrument to
listen. The instrument can be placed in local lockout mode by sending the
local lockout (LLO) command (see SYSTem:LOCKout in chapter 6).
The instrument can be returned to local mode by either setting the REN
line false, or sending the instrument the go to local (GTL) command.

The following commands are IEEE 488.1 bus commands (ATN true).
IEEE 488.2 defmes many of the actions which are taken when these
commands are received by an instrument.

The device clear (DCL) or selected device clear (SDC) commands clear
the input and output buffers, reset the parser, clear any pending
commands, and clear the Request-OPC flag.

The group execute trigger command will cause the same action as the
START command for Group Run: the instrument will acquire data for
the active waveform and listing display(s).

This command halts all bus activity. This includes unaddressing all
listeners and the talker, disabling serial poll on all devices, and returning
control to the system controller.

Programming Over HP-18
2-3

Ol
5T-o
ilEN3
33--. rr
fta\t

-tct

(,)

0­
< ~
CD ...
... 0
::D CC
cn;J
N3
(,)3N _.
o~

cc

Programming Over RS-232C

Introduction This section describes the interface functions and some general concepts
of the RS-232C. The RS-232C interface on this instrument is

Hewlett-Packard's implementation of EIA Recommended Standard
RS-232C, nlnterface Between Data Terminal Equipment and Data
Communications Equipment Employing Serial Bioary Data Intercharge.n
With this interface, data is sent one bit at a time and characters are not
spchronized with preceding or subsequent data characters. Each
character is sent as a complete entity without relationship to other events.

lnterface
Operation

HP 1652F,/16538
Programming Reference

The HP L652B153B can be progrnmmed with a controller over RS-232C
using either 3 minimrlm three-wire or efiended hardwire interface. The
operation and exact connections for these interfaces are described in
more detail in the following sections. When you are prog'amming an

HP L652B|53B over RS-232C with a controller, you iue normally
operating directly between two DTE (Data Terminal Equipment) devices
as compared. to operating between a DTE device and a DCE (Data
Commtrnications Equipment) device.

When operating directly between two DTE devices, certain
considerations must be taken into account. For three-wire operation,
XOND(OFF must be used to handle protocol between the devices. For
extended hardwire operation, protocol may be handled either with
XOND(OFF or by manipulating the CTS and RTS lines of the RS-232C
link. For both three-wire and efiended hardwire operation, the DCD and
DSR inputs to the HP L652B153B must remain higb for proper operation.

With extended hardwire operation, a higb on the CTS input allows the HP
L652B153B to send data and a low on this line disables the HP L652B153B

data transmission. Likewise, a higb on the RTS line allows the controller
to send data and a low on this line signals a request for the controller to
disable data transmission. Since three-wire operation has no control over
the CTS input, internal pull-up resistors in the HP L652B|53B assure that
this line remains high for proper three-wire operation.

Programming Over RS-232C
3'1

Programming Over RS-232C 3
Introduction

Interface
Operation

HP 16528/16538
Programming Reference

This section describes the interface functions and some general concepts
of the RS-232C. The RS-232C interface on this instrument is
Hewlett-Packard's implementation of EIA Recommended Standard
RS-232C, "Interface Between Data Terminal Equipment and Data
Communications Equipment Employing Serial Binary Data Interchange."
With this interface, data is sent one bit at a time and characters are not
synchronized with preceding or subsequent data characters. Each
character is sent as a complete entity without relationship to other events.

The HP 1652B/53B can be programmed with a controller over RS-232C
using either a minimum three-wire or extended hardwire interface. The
operation and exact connections for these interfaces are described in
more detail in the following sections. When you are programming an
HP 1652B/53B over RS-232C with a controller, you are normally
operating directly between two DTE (Data Terminal Equipment) devices
as compare~ to operating between a DTE device and a DCE (Data
Communications Equipment) device.

When operating directly between two DTE devices, certain
considerations must be taken into account. For three-wire operation,
XON/XOFF must be used to handle protocol between the devices. For
extended hardwire operation, protocol may be handled either with
XON/XOFF or by manipulating the crs and RTS lines of the RS-232C
link. For both three-wire and extended hardwire operation, the DCD and
DSR inputs to the HP 1652B/53B must remain high for proper operation.

With extended hardwire operation, a high on the crs input allows the HP
1652B/53B to send data and a low on this line disables the HP 1652B/53B
data transmission. Likewise, a high on the RTS line allows the controller
to send data and a low on this line signals a request for the controller to
disable data transmission. Since three-wire operation has no control over
the crs input, internal pull-up resistors in the HP 1652B/53B assure that
this line remains high for proper three-wire operation.

Programming Over RS-232C
3-1

Cables Selecting a cable for the RS-232C interface is dependent on your specific
application. The following paragraphs describe which lines of the
HP L652B153B are used to control the operation of the RS -232C relative
to the HP L652B,1538. To locate the proper cable for your application,
refer to the reference manual for your controller. This manual should
address the exact method your controller uses to operate over the
RS-232C bus.

Minimum
Three-Wire
lnterface with
Software
Protocol

With a three-wire interface, the software (as compared to interface
hardware) controls the data flow between the HP L652B153B and the
controller. This provides a much simpler connection between devices

since you can ignore hardware handshake requirements. The
HP L652B153B uses the following mnnections on its RS-232C interface for
three-wire communication:

o Pin 7 SGND (Signal Ground)
o PlmZ TD (Tra''smit Data from HP L652B153B)

o Pin 3 RD (Receive Data into HP L652B153B)

The TD (Transmit Data) line from the HP 1652F,1538 must connect to the
RD (Receive Data) lioe on the controller. " Likewise, the RD line from the
HP L652B153B must connect to the TD line on the controller. Internal
pull-up resistors in the HP 1652B,1538 assure the DCD, DSR, and CTS
lines remai. high when you are using a three-wire interface.

The three-wire interface provides no hardware means to control data flow
between the controller and the HP 165281538. XON/OFF protocol is the

only means to control this data flow.

HP 16528/16s38
Programming Reference

Note II$

Programming Over RS-232C
3-2

Cables

Minimum
Three-Wire
Interface with
Software
Protocol

I

Note ""

Selecting a cable for the RS-232C interface is dependent on your specific
application. The following paragraphs describe which lines of the
HP 1652B/53B are used to control the operation of the RS-232C relative
to the HP 1652B/53B. To locate the proper cable for your application,
refer to the reference manual for your controller. This manual should
address the exact method your controller uses to operate over the
RS-232C bus.

With a three-wire interface, the software (as compared to interface
hardware) controls the data flow between the HP 1652B/53B and the
controller. This provides a much simpler connection between devices
since you can ignore hardware handshake requirements. The
HP 1652B/53B uses the following connections on its RS-232C interface for
three-wire communication:

• Pin 7 SGND (Signal Ground)
• Pin 2 TO (Transmit Data from HP 1652B/53B)
• Pin 3 RD (Receive Data into HP 1652B/53B)

The TO (Transmit Data) line from the HP 1652B/53B must connect to the
RD (Receive Data) line on the controller. ~ Likewise, the RD line from the
HP 1652B/53B must connect to the TD line on the controller. Internal
pull-up resistors in the HP 1652B/53B assure the DCD, DSR, and crs
lines remain high when you are using a three-wire interface.

The three-wire interface provides no hardware means to control data flow
between the controller and the HP 1652B/53B. XON/OFF protocol is the
only means to control this data flow.

Programming Over RS-232C
3-2

HP 16528/16538
Programming Reference

Extended
Interface with
Hardware
Handshake

HP 16528/16538
Programming Reference

With the extended interfa@ , both the softrvare and the hardware can
control the data flow between the HP L652B153B and the controller. This
allows you to have more control of data flow between devices. The
HP L652B153B uses the following sonnections on its RS-232C interface for
extended interface 6pmmrtnication:

o Pin 7 SGND (Signal Ground)
o P:mZ TD (Transmit Data from HP L65ZB1S3B)
o Pin 3 RD (Receive Data into HP 16528,1538)

The additional lines you use depends on your controller's implementation
of the extended hardwire interface.

o Pin 4 RTS (Request To Send) is an output from the
HP L652B153B which can be used to control incoming data flow.

o Pin 5 CTS (Clear To Send) is an input to the HP L652B|53B
which controls data flow from the HP L65zBl53B.

o Pin 6 DSR (Data Set Ready) is an input to the HP 1652B,1538
which controls data flow from the HP L652B153B within f1a,s bytes.

o Pin 8 DCD (Data Carrier Detect) is an input to the HP
16528,638 which controls data flow from the HP 1652F,1538 within
two bytes.

o Pin 20 DTR (Data Terminal Ready) is an output from the
HP L652B|53B which is enabled as long as the HP L652B|53B is
turned on.

The TD (Transmit Data) line from the HP L652B153B must connect to the
RD (Receive Data) line on the controller. Likewise, the RD line from the
HP L652B153B must connect to the TD line on the controller.

Programming Over RS-232C
3-3

Extended
Interface with
Hardware
Handshake

HP 16528/16538
Programming Reference

With the extended interface , both the software and the hardware can
control the data flow between the HP 1652B/53B and the controller. This
allows you to have more control of data flow between devices. The
HP 1652B/53B uses the following connections on its RS-232C interface for
extended interface communication:

• Pin 7 SGND (Signal Ground)
• Pin 2 TO (Transmit Data from HP 1652B/53B)
• Pin 3 RD (Receive Data into HP 1652B/53B)

The additional lines you use depends on your controller's implementation
of the extended hardwire interface.

• Pin 4 RTS (Request To Send) is an output from the
HP 1652B/53B which can be used to control incoming data flow.

• Pin 5 CTS (Clear To Send) is an input to the HP 1652B/53B
which controls data flow from the HP 1652B/53B.

• Pin 6 DSR (Data Set Ready) is an input to the HP 1652B/53B
which controls data flow from the HP 1652B/53B within two bytes.

• Pin 8 DCD (Data Carrier Detect) is an input to the HP
1652B/53B which controls data flow from the HP 1652B/53B within
two bytes.

• Pin 20 DTR (Data Terminal Ready) is an output from the
HP 1652B/53B which is enabled as long as the HP 1652B/53B is
turned on.

The TO (Transmit Data) line from the HP 1652B/53B must connect to the
RD (Receive Data) line on the controller. Likewise, the RD line from the
HP 1652B/53B must connect to the TO line on the controller.

Programming Over RS-232C
3-3

The RTS (Request To Send), is an output from the FfP L652B|53B which
can be used to control insoming data flow. A true on the RTS line allows
the controller to send data and a false on this line slgnals a request for the
controller to disable data transmission.

The CTS (Clear To Send), DSR (Data Set Ready), ird DCD (Dara
Carrier Detect) lines iue inputs to the HP L652B153B which control data
flow from the HP L652B,/538 (Pin 2). Internal putl-up resistors in the
HP L652B|53B assure the DCD and DSR lines remain higb when they are
not connected. If DCD or DSR are connected to the controller, the
controller must keep these lines and the CTS line higb to enable the
HP L652B|53B to send data to the controller. A low on any one of these
lines will disable the HP L652B153B data trans-ission. Dropping the CTS
line low during data transmission will stop HP 1652F,638 data
[lansmission immediately. Dropping either the DSR or DCD line low
during data transmission will stop HP L652B153B data trans-ission, but as
many as two additional bytes may be transmitted from the HP L652F,1538.

Cable Example

Note {$

Figure 3-1 is an example of how to connect the HP 1652F,1538 to the
HP 9ffi28A Interface card of an HP 9000 series zm3ffi controller. For
more information on cabling, refer to the reference manual for your
specific controller.

Since this example does not have the correct connections for hardware
handshake, XON/XOFF protocol must be used when connecting the
HP L652B|53B as shown io fignte 3-1

HP 16528/538
REAR PAI{EL

| | I | -HP986284| | | l,/ INTERFACECARD| | | l-.
I I I l- I

-
i -T-' Iirnl

1gz4?t.r I|'
5961--42'6(MALE-TH{ALE)

,**lotl-Tlru.urlr'

Figure 3-1. Cable Example

Programming Over RS-232C
3-4

HP 16s28/16s38
Programming Reference

The RTS (Request To Send), is an output from the HP 1652B/53B which
can be used to control incoming data flow. A true on the RTS line allows
the controller to send data and a false on this line signals a request for the
controller to disable data transmission.

The crs (Clear To Send), DSR (Data Set Ready), and DeD (Data
Carrier Detect) lines are inputs to the HP 1652B/53B which control data
flow from the HP 1652B/53B (Pin 2). Internal pull-up resistors in the
HP 1652B/53B assure the DeD and DSR lines remain high when they are
not connected. If DCD or DSR are connected to the controller, the
controller must keep these lines and the CTS line high to enable the
HP 1652B/53B to send data to the controller. A low on anyone of these
lines will disable the HP 1652B/53B data transmission. Dropping the CTS
line low during data transmission will stop HP 1652B/53B data •
transmission immediately. Dropping either the DSR or DeD line low
during data transmission will stop HP 1652B/53B data transmission, but as
many as two additional bytes may be transmitted from the HP 1652B/53B.

Cable Example Figure 3-1 is an example of how to connect the HP 1652B/53B to the
HP 98628A Interface card of an HP 9000 series 200/300 controller. For
more information on cabling, refer to the reference manual for your
specific controller.

I
Note 1;1 Since this example does not have the correct connections for hardware

handshake, XON/XOFF protocol must be used when connecting the
HP 1652B/53B as shown in figure 3-1

5061-4216
DCE OPT. 00Z

(FEMALE-To-FEt.4ALE)

~
HP 98628A

'---- -~_-_-_-:' I INTERFACE CARD

OJ- -
13242ti

(MALE-To-MALE)

HP 16528/538
REAR PANEL

c l

Figure 3-1. Cable Example

Programming Over RS-232C
3-4

HP 16528/16538
Programming Reference

Configuring the
Instrument
lnterface

The front-panel ll0 menu key allows you access to the RS-232C
Confrguration menu where the RS -nZC interface is configured.

If you are not tamiliar with how to confrgure the RS-232C interface, refer
to the HP 165281538 Front-panel Reference manual.

Interface
Capabilities

Protocol

HP 1652B./16s38
Programming Relerence

The baud rate, stop bits, parity, protocol, and data bits must be configured
exactly the same for both the controller and the HP L652B|53B to
properly com-unicate over the RS-232C bus. The HP L652B|53B
RS-232C interface capabilities are listed below:

. Baud Rate: L10, 300, 600, t200,Zm,€ffi, J)600, or L9.2 k
o Stop Bits: 1, 1,.5, or 2
o Parity: None, Odd, or Even
o Protocol: None or XON/XOFF
. Data Bits: 8

NONE. With a three-wire interface, selectirg NONE for the protocol
does not allow the sending or receiuiog device to control data flow. No
control over the data flow increases the possibility of missing data or
tran sferrlng incomplete data.

With an extended hardwire interface, selecting NONE allows a hardwiue
handshake to occur. With hardware handshake, hardware signals control
data flow.

XONIXOFF. XOND(OIiF stands for Transmit On/Transmit Off. With
this mode the receiver (controller or HP L652B153B) controls data flow
and can request that the sender (HP L652B153B or controller) stop data
flow. By sending XOFF (ASCII 19) over its transmit data [ine, the
receiver requests that the sender disables data [lansmission. A
subsequent XON (ASCII L7) allows the sending device to resume data
transmission.

Programming Over RS-232C
&5

Configuring the
Instrument
Interface

Interface
CapabiIities

The front-panel I/O menu key allows you access to the RS-232C
Configuration menu where the RS-232C interface is configured.

If you are not familiar with how to confIgUre the RS-232C interface, refer
to the HP 1652B/53B Front-panel Reference manual.

The baud rate, stop bits, parity, protocol, and data bits must be configured
exactly the same for both the controller and the HP 1652B/53B to
properly communicate over the RS-232C bus. The HP 1652B/53B
RS-232C interface capabilities are listed below:

• Baud Rate: 110, 300, 600, 1200,2400,4800, 9600, or 19.2 k
• Stop Bits: 1, 1.5, or 2
• Parity: None, Odd, or Even
• Protocol: None or XON/XOFF
• Data Bits: 8

Protocol NONE. With a three-wire interface, selecting NONE for the protocol
does not allow the sending or receiving device to control data flow. No
control over the data flow increases the possibility of missing data or
transferring incomplete data.

With an extended hardwire interface, selecting NONE allows a hardware
handshake to occur. With hardware handshake, hardware signals control
data flow.

XON/XOFF. XON/XOFF stands for Transmit On;7ransmit Off. With
this mode the receiver (controller or HP 1652B/53B) controls data flow
and can request that the sender (HP 1652B/53B or controller) stop data
flow. By sending XOFF (ASCII 19) over its transmit data line, the
receiver requests that the sender disables data transmission. A
subsequent XON (ASCII 17) allows the sending device to resume data
transmission.

HP 16528/16538
Programming Reference

Programming Over RS-232C
3-5

Data Bits Data bits are the number of bits sent and received per character that
represent the binary code of that character. Characters consist of either 7
or 8 bits, depending on the application. The Ftp t652Sl53B supports 8 bit
only.

8 Bit Mode. Information is usually stored in bytes (8 bits at a time). With
8-bit mode, you can send and receive data just as it is stored, without the
need to convert the data.

Note l!$
The controller and the HP L652B153B must be in the s:rme bit mode to
properly communicate over the RS -?32C. This means that both the
controller and the HP L652B,/538 must have the capability to send and
receive 8 bit data.

For more information on the RS-232C interface, refer to the
HP 1652B|HP 16538 Front-Panel Reference Manual. For information on
RS-232C voltage levels and connector pinouts, refer to the HP 16528/538
Service Monual.

Communicating
Over the.
RS-232C Bus
(HP eo00
Series 2OOl300
Controller)

Programming Over RS-232C
3-6

Each RS-232C interf.ace card has its own interface select code. This code
is used by the controller to direct commands and communications to the
proper interface by specifying the correct interface code for the device
address.

Generully, the interface select code can be any decimal value benveen 0
and 31, except for those interface codes which are reserved by the
controller for internal peripherals and other internal interfaces. This
value can be selected througb switches on the interface card. For more
information, refer to the reference manual for your interface card or
controller.

For example, if yotu RS-232C interface select code is 9, the device
address required to spmm unicate over the RS -232C bus is 9.

HP 16528/16s38
Programming Reference

Data Bits Data bits are the number of bits sent and received per character that
represent the binary code of that character. Characters consist of either 7
or 8 bits, depending on the application. The HP 1652B/53B supports 8 bit
only.

8 Bit Mode. Information is usually stored in bytes (8 bits at a time). With
8-bit mode, you can send and receive data just as it is stored, without the
need to convert the data.

I
Note 1;1

Communicating
Over the.
RS·232C Bus
(HP 9000
Series 200/300
Controller)

The controller and the HP 1652B/53B must be in the same bit mode to
properly communicate over the RS-232C. This means that both the
controller and the HP 1652B/53B must have the capability to send and
receive 8 bit data.

For more information on the RS-232C interface, refer to the
HP 1652B/HP 1653B Front-Panel Reference Manual. For information on
RS-232C voltage levels and connector pinouts, refer to the HP 1652B/53B
Service Manual.

Each RS-232C interface card has its own interface select code. This code
is used by the controller to direct commands and communications to the
proper interface by specifying the correct interface code for the device
address.

Generally, the interface select code can be any decimal value between 0
and 31, except for those interface codes which are reserved by the
controller for internal peripherals and other internal interfaces. This
value can be selected through switches on the interface card. For more
information, refer to the reference manual for your interface card or
controller.

For example, ifyour RS-232C interface select code is 9, the device
address required to communicate over the RS-232C bus is 9.

Programming Over RS-232C
3-6

HP 1652B/16538
Programming Reference

Lockout
Command

To lockout the front panel controls use the SYSTem command LOCKout.
When this function is on, all controls (except the power switch) are
entirely locked out. I-cal control can only be restored by sending the
command :LOCKout OFF. For more information on this command see

the chapter nsystem Commandsn in this manual.

note ll$ **ittl5:,Hi'restore
local contro! but this wiu arso reset

HP 16528/16538
Programming Reference

Programming Over RS-232C
t7

Lockout
Command

1·1
Note"

HP 16528/16538
Programming Reference

To lockout the front panel controls use the SYSTem command LOCKout.
When this function is on, all controls (except the power switch) are
entirely locked out. Local control can only be restored by sending the
command :LOCKout OFF. For more information on this command see
the chapter "System Commands" in this manual.

Cycling the power will also restore local control, but this will also reset
certain RS-232C states.

Programming Over RS-232C
3-7

cl
o
Ps
tl
6!
rt tl

=ogr Gt.r+ I

6'g
=Jo3oi'
?6at !t
==f. cL
o
a
J0

Programming and
Documentation Gonventions

IntfOdUCtiOn This section covers the progremming conventions used in programming
the instrument, as well as the documentations conventions used in this
manual. This chapter also contains a detailed description of the command
tree and command tree traversal.

TfUnCatiOn RUle The truncation rule for the keynords used in headers and parameters is:

If the longform has four or fover characters, there is no change in the
shortforu. When the longfom has more than four characters the
shortfom isjust the first four characters, unless the fourth charac{er is
a vonrcl. In that case only the first three characters are used.

- ff.gl There are some commands that do not conform to the truncation rule by
NOte rf desiga. These will be noted in their respective description pages.

Some examples of how the truncation rule is applied to various commands
are shown in table +L.

l,ongform I Shortform

OFF I OFF
DATA I DATA
START I STAR
LONGFORM I LONG
DEI-AY I DEL
ACCUMULATEI ACC

Table +1. Keyrord Truncation

HP 16528/16538 Programming and Documentation Conventions
Prognmming Reterence +1

Programming and
Documentation Conventions

4

Introduction This section covers the programming conventions used in programming
the instrument, as well as the documentations conventions used in this
manual. This chapter also contains a detailed description of the command
tree and command tree traversal.

Truncation Rule The truncation rule for the keywords used in headers and parameters is:

If the longform has four or fewer characters, there is no change in the
shortform. When the longform has more than four characters the
shortform is just the first four characters, unless the fourth character is
a vowel. In that case only the first three characters are used.

. I

Note II

HP 16528/16538
Programming Reference

There are some commands that do not conform to the truncation rule by
design. These will be noted in their respective description pages.

Some examples of how the truncation rule is applied to various commands
are shown in table 4-1.

Longform Shortform

OFF OFF
DATA DATA
START STAR
LONGFORM LONG
DELAY DEL
ACCUMULATE ACC

Table 4-1. Keyword Truncation

Programming and Documentation Conventions
4-1

Infinity
Representation

The representation of infinity is 9.98 +37 for real nu-bers and 32767 f.or
integers. This is also the value returned when a measurement cannot be
made.

Sequential and
Overlapped
Commands

IEEE 488.2 makes the distinction between sequential and overlapped
commands. Sequential commands finish their task before the execution of
the nefi @mmand starts. Overlapped commands run concurrently, and
therefore the command following an overlapped co-mand may be started
before the overlapped command is completed. The overlapped com-ands
for the HP L652B153B are STARI, STOP, and AUToscale.

Response
Generation

IEEE 488.2 defines two times at which query responses may be buffered.
The first is when the query is parsed by the instrument and the second is
when the controller addresses the instrument to talk so that it may read
the response. The HP L652B153B will buffer responses to a query when it
is parsed.

SyntaX Diagfams At the beginning of each of the following chapters are slntax d.iagrams
showing the proper syntax for each command. All characters contained in
a circle or oblong are literals, and must be entered exactly as shown.
Words and phrases contained in 1ss(anglss are nzrmes of items used with
the com-and and are described in the accompaoyttrg text of each
co--and. Each line can only be entered from one direction as indicated
by the arrow on the entry line. Any combination of co-mands and
arguments that can be generated by following the lines in the proper
direction is sptactically correct. An argument is optional if there is a
path around it. When there is

"
lsslangle which contains the word

nspace,n a white space character must be entered. White space is optional
in many other places.

Programming and Documentation Conventions
+2

HP 16s28/16538
Programming Reference

Infinity
Representation

Sequential and
Overlapped
Commands

Response
Generation

Syntax Diagrams

The representation of infmity is 9.9E +37 for real numbers and 32767 for
integers. This is also the value returned when a measurement cannot be
made.

IEEE 488.2 makes the distinction between sequential and overlapped
commands. Sequential commands fmish their task before the execution of
the next command starts. Overlapped commands run concurrently, and
therefore the command following an overlapped command may be started
before the overlapped command is completed. The overlapped commands
for the HP 1652B/53B are STARt, STOP, and AUToscale.

IEEE 488.2 defmes two times at which query responses may be buffered.
The fIrst is when the query is parsed by the instrument and the second is
when the controller addresses the instrument to talk so that it may read
the response. The HP 1652B/53B will buffer responses to a query when it
is parsed.

At the beginning of each of the following chapters are syntax diagrams
showing the proper syntax for each command. All characters contained in
a circle or oblong are literals, and must be entered exactly as shown.
Words and phrases contained in rectangles are names of items used with
the command and are described in the accompanying text of each
command. Each line can only be entered from one direction as indicated
by the arrow on the entry line. Any combination of commands and
arguments that can be generated by following the lines in the proper
direction is syntactically correct. An argument is optional if there is a
path around it. When there is a rectangle which contains the· word
"space," a white space character must be entered. White space is optional
in many other places.

Programming and Documentation Conventions
4-2

HP 16528/16538
Programming Reference

Notation The following conventions iue used in this manual when describing

COnVentiOnS and progamming rules and examples:

Definitions
to symbolize a program code p:rrameter or a bus command.

"is defined as." For sxample, A ::: B indicates that A
can be replaced by B io -y statement conlaining A .

"or": indicates a choice of one element from a list. For
sxample, A I B indicates A or B, but not both.

An ellipsis (trailing dots) is used to indicate that the
preceding element may be repeated one or more times.

Square brackets indicate that the enclosed items iue optional.

When several items are enclosed by braces and sep:uated
by ls, one, ild only one of these elements must be selected.

Three Xs after an ENTER or OUTPUT statement
represent the device address required by your controller.

In addition, the following definition is used:

< NL > :: : Linefeed (ASCII decimal 10).

u

{}

XXX

HP 16528.,/16538
Programming Reference

Programming and Documentation conventions
+3

Notation The following conventions are used in this manual when describing

Conventions and programming rules and examples:

Definitions < > Angular brackets enclose words or characters that are used
to symbolize a program code parameter or a bus command.

"is defmed as." For example, A :: = B indicates that A
can be replaced by B in any statement containing A.

"or": indicates a choice of one element from a list. For
example, AlB indicates A or B, but not both.

An ellipsis (trailing dots) is used to indicate that the
preceding element may be repeated one or more times.

[] Square brackets indicate that the enclosed items are optional.

{ } When several items are enclosed by braces and separated
by Is, one, and only one of these elements must be selected.

xxx Three Xs after an ENTER or OUTPUT statement
represent the device address required by your controller.

In addition, the following defmition is used:

< NL > :: = Linefeed (ASCII decimal 10).

HP 16528/16538
Programming Reference

Programming and Documentation Conventions
4-3

The Command
Tree

Command Types

Tree Traversal Rules

Programming and Documentation Conventions
M

The @mmand tree (frgure +L) shows all com-ands in the HP L652B,/538
logtc analyznrs and the relationship of the commands to each other.
Parameters are not shown in this figure. The command tree allows you to
see what the HP L652Bl53B's parser expects to receive. AII legal headers
can be created by traversing down the tree, adding keyvords until the end
of a branch has been reached.

As shown in chapter 1's nHeader Tlpesn section, there iue three tlpes of
headers. Each header has a correspondi"g command t1pe. This section
shows how they relate to the command tree.

System Commands. The system commands reside at the top level of the
command tree. These commands are always parsable if they occur at the
beginning of a progr4m message, or are preceded by a colon. START and
STOP are examples of system commands.

Subsystem Commands. Subsystem commands are grouped together
under a common node of the tree, such as the MMEMORY commands.

Common Commands. Common commands are independent of the tree,
and do not affect the position of the piuser within the tree. *CIS and
*RST are examples of commotr 6smmands.

Co-mand headers iue created by traversing down the command tree. For
each group of keyvords not separated by a branch, one keyvord must be
selected. As shown on the tree, branches are always preceded by colons.
Do not add spaces around the colons. The following two rules apply to
traversi4g the tree:

A leaditg colon (the first character of a header) or a < terminator >
places the piuser at the root of the @mmand tree.

Executt"g a subsystem command places you in that subsystem (until a
leaditg colon or a < terminator > is found). The parser will stay at the
colon above the keyvord where the last header terminated. Any
command below that point can be sent within the current program
message without sending the keywords(s) which appear above thsm.

HP 16s28/16538
Programming Relerence

The Command
Tree

Command Types

The command tree (figure 4-1) shows all commands in the HP 1652B/53B
logic analyzers and the relationship of the commands to each other.
Parameters are not shown in this figure. The command tree allows you to
see what the HP 1652B/53B's parser expects to receive. All legal headers
can be created by traversing down the tree, adding keywords until the end
of a branch has been reached.

As shown in chapter 1's "Header Types" section, there are three types of
headers. Each header has a corresponding command type. This section
shows how they relate to the command tree.

System Commands. The system commands reside at the top level of the
command tree. These commands are always parsable if they occur at the
beginning of a program message, or are preceded by a colon. START and
STOP are examples of system commands.

Subsystem Commands. Subsystem commands are grouped together
under a common node of the tree, such as the MMEMORY commands.

Common Commands. Common commands are independent of the tree,
and do not affect the position of the parser within the tree. ·CLS and
*RST are examples of common commands.

Tree Traversal Rules Command headers are created by traversing down the command tree. For
each group of keywords not separated by a branch, one keyword must be
selected. As shown on the tree, branches are always preceded by colons.
Do not add spaces around the colons. The following two rules apply to
traversing the tree:

A leading colon (the first character of a header) or a < terminator>
places the parser at the root of the command tree.

Executing a subsystem command places you in that subsystem (until a
leading colon or a < terminator> is found). The parser will stay at the
colon above the keyword where the last header terminated. Any
command below that point can be sent within the current program
message without sending the keywords(s) which appear above them.

Programming and Documentation Conventions
4-4

HP 16528/16538
Programming Reference

Examples

Example 1

Example 2

Example 3

HP 16s2Bl16538
Programming Relerence

The following examples are unitten using HP BASIC 4.0 on a HP 9000
Series ?ffif:3ffJ' Controlletr. The quoted string is placed on the bus,
followed by a carriage return and linefeed (CRLF).

The three Xs (XXX) shown in this manual after an ENTER or OUTPUT
statement represents the device address required by your controller.

OUTPUT)0O(": SYSTEM: HEADER ON; LONGFORM ON'

In example 1, the colon between SYSTEM and HEADER is necessary
since SYSTEM:HEADER is a compound command. The semicolon
between the HEADER command and the LONGFORM mmmand is the
required < program message unit sepiuator >. The LONGFORM
command does not need SYSTEM preceding it, since the
SYSTEM:HEADER @mmand sets the parser to the SYSTEM node in
the tree.

OUTPUT)OCK;":MMEMORY: INITIALIZE;STORE'FILE','FILE DESCRIPT|ON"'

or

OUTPUT)00(" : M M EMORY: lNlTtALlZE"

OUTPUT)Ofr; ": MMEMORY: STORE'FILE_','FILE DESCRIPTION','

In the first line of example 2, the "subsystem selector" is implied for the
STORE command in the compound command. The STORE command
must be in the same program message as the INTTIALIZE co--and,
since the < progr:Lm message terminator > will place the parser back at
the root of the command tree.

A second way to send these commands is by placing "MMEMORY:"
before the STORE command as shown in the fourth line of exampleZ.

O UTP UT)OOq " : M M EM : CATALOG? ; : SYSTEM : PRI NT ALL'

In example 3, the leading colon before SYSTEM tells the parser to go
back to the root of the command tree. The piuser can then see the
SYSTEM:PRINT command.

Programming and Documentation Conventions
It-5

Examples The following examples are written using HP BASIC 4.0 on a HP 9000
Series 2001300 Controller. The quoted string is placed on the bus,
followed by a carriage return and linefeed (CRLF).

The three Xs (XXX) shown in this manual after an ENTER or OUTPUT
statement represents the device address required by your controller.

Example 1 OUTPUT XXX; ":SYSTEM:HEADER ON;LONGFORM ON"

In example 1, the colon between SYSTEM and HEADER is necessary
since SYSTEM:HEADER is a compound command. The semicolon
between the HEADER command and the LONGFORM command is the
required < program message unit separator>. The LONGFORM
command does not need SYSTEM preceding it, since the
SYSTEM:HEADER command sets the parser to the SYSTEM node in
the tree.

Example 2 OUTPUT XXX;":MMEMORY:INITIALlZE;STORE 'FILE_','FILE DESCRIPTION'"

or

OUTPUT XXX; II: MMEMORY: INITIALlZEII

OUTPUT XXX; II:MMEMORY:STORE 'FILE_','FILE DESCRIPTION'II

In the frrst line of example 2, the "subsystem selector" is implied for the
STORE command in the compound command. The STORE command
must be in the same program message as the INITIALIZE command,
since the < program message terminator> will place the parser back at
the root of the command tree.

A second way to send these commands is by placing "MMEMORY:"
before the STORE command as shown in the fourth line of example 2.

Example 3 OUTPUT XXX;":MMEM:CATALOG?;:SYSTEM:PRINT ALLII

In example 3, the leading colon before SYSTEM tells the parser to go
back to the root of the command tree. The parser can then see the
SYSTEM:PRINT command.

HP 16528/16538
Programming Reference

Programming and Documentation Conventions
4-5

RMODe START STOP MMIM: MACHine{112}:PPOWe r

AUTo lood
CATo I og
COPY

DOWN I ood
INIT io I i ze
PACK

PURG e

Rt N ome

UPLood

SFORmo t :

I

CLOCK

CPER i od
LABe I

MASTeT

REMove
SLAVe
THResho I d

o r 650852

LOAD:
I

CONF i 9
ASSemb I e r

STORe:
I

CONF i g

SLIST:
I

C0L urnn

DATA
LINE
MMODe

OPATtern
OSEorch
OSTote
OTAG

RUNT i I

TAVeroge
TMAX i mum

TMIN imum
VRUN s

XOTog
XPATtern
XSEorch
XSTote
X TAG

l.r't
lt)

ARM

ASS i gn
AUTosco I e

NAME

TYPE

TFORMo t :

I

LABe I

R[Mo v e

THResho I d

SWAVe f o rm:
I

ACCumu lote
DELoy
INSer t
RANGe

RfMove

DLIST: WLIST:
tl

COL umn XSTo t e
LINt OSTote

OTIMe
XTIMe

SYST em :

I

ARMB n c

DATA
DSP

ERRo r
HIAD e r

KTY

LER
LOCKou t
LONG f o rm
Mt NU

MT SI
Mt SR

PRiNt
StTup

STRoce:
I

BRAN c h

FIND
PRIStore
RANG e

RISTor t
SEQuence
STORe
TAG

Tf RM

TTRoce:
I

AMODe

DURot ion
EDGt
GLITch
PATTern

SYMBOL :

I

BAS I
PATTe r n
RANG e

REMo v e

WIDTh

TWAVeform:
I

ACCumu lote
DELoy
INSer t
MMODe

OCONCition
OPATtern
OStorch
OTIMe
RANG e

RfMove
RUNT i I

SPER i od
TAVe r o g e

TMAX i mum

TMIN imum
VRUN s

XCONdition
XOT ime
XPATtern
XSEorch
XT IMe

COMPo r e :

I

CMAS K

COPY

DATA
FIND
RANG e

RUNT i I

SCHort:
I

ACCumu lote
HAXis
VAXis

Figure 4-1. HP 16528/538 Command Tree

Programming and Documentation Conventions HP 16528/16538
+6 Programming Reference

ARM
ASSign
AUToscale
NAME
TYPE

.....I I I I I I
PPOWer RMODe STARt STOP MMEM: MACHine{112}:

AU To,r--;-o-a-d---LO-"'I
A
-

D
-:---s-T-Le : I

CATa log I I
COpy CONFig CONFig
DOWNload ASSembler

INITialize
PACK
PURGe
REName
UPLoad

I
oLIS t: WL 1St :

I I
COLumn XSTate
LINE OSTa te

OTIMe
XTIMe

I
SYSTem:

I
ARMBnc
DATA
DSP
ERRor
HEADer
KEY
LER
LOCKout
LONGform
MENU
MESE
MESR
PRINt
SETup

I
COMPare:

I
CMASk
COpy
DATA
FIND
RANGe
RUNT i I

SFORma t :
I

CLOCk
CPERiod
LABel
MASTer
REMove
SLAVe
THReshold

01650852

Corrman
Corrmands

.CLS

.ESE

.ESR
*IDN
*OPC
*RST
*SRE
*5T8
*TST
.WAI

STRace:
I

BRANch
FIND
PREStore
RANGe
RESTart
SEQuence
STORe
TAG
TERM

SLISt:
I

COLumn
DATA
LINE
MMODe
OPATtern
OSEarch
OSTate
OTAG
RUNT i I
TAVerage
TMAXimum
TMINimum
VRUNs
XOTag
XPATtern
XSEarch
XSTate
XTAG

I
SCHart:

I
ACCumulate
HAXis
VAXis

TFORMa t :
I

LABel
REMove
THReshold

I
SWAVeform:

I
ACCumulate
DELay
INSert
RANGe
REMove

TTRace:
I

AMODe
DURation
EDGE
GLITch
PATTern

I
SYMBOL:

I
BASE
PATTern
RANGe
REMove
WIDTh

TWAVeform:
I

ACCumulate
DELay
INSert
MMODe
OCONdition
OPATtern
OSEarch
OTIMe
RANGe
REMove
RUNT i I
SPERiod
TAVerage
TMAXimum
TMINimum
VRUNs
XCONdition
XOTime
XPATtern
XSEarch
XTIMe

Figure 4-1. HP 16528/538 Command Tree

Programming and Documentation Conventions
4-6

HP 16528/16538
Programming Reference

SCOPe :

CHANn e I :

I

COUP I i ng
OFFSe t
PR0Be
RANGe

o 1 65085 1

AUIosco le
SMOD e

TRIGger:
I

L[Ve I

MODE

SLOPe
SOUR c e

ACQuire:
I

COUN t
T YPI

TIMebose:
I

DELoy
MODE

RANG e

WAVeforrn:
I

COUN T

DATA

FORMo t
P0INts
PREomb I e

RECo r d

SOUR c e

I YPE

VALid
XINCremenl
XORigin
XREFerence
YINCrement
YORigin
YREFerence

MIASU r e :

I
I

ALL
FALL t i me

FREQuency
NWIDth
OVERshoo t
PER iod
PRtShoo t
PWIDth
RISe t i me

SOUR c e

VAMP I i tude
VBAS e

VMAX

VMIN
VPP

VTOP

Figure +1. HP 16529.1538 Command Tree (continued)

HP 16528/16538
Programming Reference

Programming and Documentation Conventions
+7

01650851

I
MEASure:

I
ALL
FALL time
FREQuency
NWIDth
OVERshoot
PERiod
PREShoot
PWIDth
RISet ime
SOURce
VAMP I j tude
VBASe
VMAX

VMIN
VPP
VTOP

I
WAVeform:

I
COUNt
DATA
FORMat
POINts
PREamble
RECord
SOURce
TYPE
VALid
XINCrement
XORigin
XREFerence
YINCrement
YORigin
YREFerence

I
TIMebase:

I
DELay
MODE
RANGe

i
I

ACQu ire:
I

COUNt
TYPE

I
TRIGger:

I
LEVel
MODE
SLOPe
SOURce

CHANne I :
I

COUP ling
OFFSet
PROBe
RANGe

~
SCOPe:

I

~UTo~ca Ie
, SMODe

Figure 4-1. HP 16528/538 Command Tree (continued)

HP 16528/16538
Programming Reference

Programming and Documentation Conventions
4-7

Table +2. Alphabetic Command Cross-Reference

Command Where used Command Where used

ACCumulate

ALL
AlvlODe
ARM
ARMBnc
ASSigp
AUToload
AUToscale
BASE
BRANch
CATalog
CLOCK
CMASK
COLuntn
COPY
COUNT
COUPling
CPERiod
DATA

DELay

DOWNload
DSP
DURation
EDGE
ERRor
FALLtime
FIND
FORMat
FREQuency

SCHart, SWAVeform,
TWAVeform
MEASure
TTRace
MACHine
System
MACHine
MMEMor1l
MACHine, SCOPe
SYMBoI
STRace
MMEMory
SFORmat
COMPare
DLISt, SLIST

COMPile,MMEMoT
ACQuire, WAVeform
CHANnel
SFORmat
COMPre, SLISI, System,
WA\lEform
SWAVeform, TlMebffie,
TWAVeform
MMEMory
System
TTRace
TTRace
System
MEASure
COMPffe, STRace
WAVeform
MEASure

GLITch TTRace
HAXis SCHart
HEADeT System
INITiali-e MMEMoT
INSert SWAVeform, TWAVeform
KEY System
l-ABel SFORmat, TFORmat
LER System
LEVeI TRIGger
LINE DLISt, SLIST
LOAD MMEMoT
LOCKout System
LONGform System
MASTeT SFORmat
MENU System

]

MESE System
IMESR System
IMMoDe SLIST
IMODE TIMeb6e, TRIGger
INAME MACHine
I

tI\MIDth MEASure
I

OcoNdition TWAVeform
IOFFSet CFIANneI I

OPATtern SLIST I

MMODe TWAVeform
I

OPATtern TWAVeform I

OSEarch SLISI, TWAVeform I
IOSTate SLISt, WLIST
I

OTAG SLIST I

OTIMe TWAVeform, WLIST I
I

OVERshoot MEASure
IPACK MMEMoT
I

Programming and Documentation Conventions
+8

HP 16s28/16s38
Programming Reference

Table 4-2. Alphabetic Command Cross-Reference

Command I Where used Command I Where used

ACCumulate SCHart, SWAVeform, GLITch TTRace
TWAVeform HAXis SCHart

ALL MEASure HEADer System
AMODe TTRace INITialize MMEMory
ARM MACHine INSert SWAVeform, TWAVeform
ARMBnc System KEY System
ASSign MACHine LABel SFORmat, TFORmat
AUToload MMEMory LER System
AUToscale MACHine, SCOPe LEVel TRIGger
BASE SYMBol LINE DLISt, SLISt
BRANch STRace LOAD MMEMory
CATalog MMEMory LOCKout System
CLOCk SFORmat LONGform System
CMASk COMPare MASTer SFORmat
COLumn DLISt, SLISt MENU System
COpy COMPare, MMEMory MESE System
COUNt ACQuire, WAVeform MESR System
COUPling CHANnel MMODe SLISt
CPERiod SFORmat MODE TIMebase, TRIGger
DATA COMPare, SLISt, System, NAME MACHine

WAVEform NWIDth MEASure
DELay SWAVeform, TIMebase, oCONdition TWAVeform

TWAVeform OFFSet CHANnel
DOWNload MMEMory OPATtem SLISt
DSP System MMODe TWAVeform
DURation TTRace OPATtem TWAVeform
EDGE TTRace OSEarch SLISt, TWAVeform
ERRor System OSTate SLISt, WLISt
FALLtime MEASure OTAG SLISt
FIND COMPare, STRace OTIMe TWAVeform, WLISt
FORMat WAVeform OVERshoot MEASure
FREQuency MEASure PACK MMEMory

Programming and Documentation Conventions
4-8

HP 16528/16538
Programming Reference

Table +2. Alphabetic Gommand Cross-Reference (continued)
I

Command I Wnerc used Command Wherc used

PATTern
PERiod
POINts
PPOWeT
PREamble
PREShoot
PREStore
PRINT
PROBe
PURGe
PWIDth
RANGe

S\t'IBol, TRace
MEASure
WAVeform
System
WAVeform
MEASure
STRace
System
CHANnel
MMEMory
MEASure
CHANnel, COMPffe,
STRace, SWAVeform,
SYIUBoI, TlMebase,
TWAVeform
WAVeform
SFORmat, SWAVeform,
Slmbol, TFORmat,
TWAVeform
MMEMory
STRace
MEASure
System
COMPile, SLISt,
WAVeform
STRace
System
SFORmat
TRIGger
SCOPe
MEASue, TRIGger,
WAVeform
TWAVeform
System
Svstem

RECord
REMove

REName
RESTart
RISetime
RMODe
RUNTiI

SEQuence
SETup
SI-AVe
SLOPe
SMODe
SOURce

SPERiod
START
STOP

STORe
TAG
TAVerage
TERM
THReshold
TMAXimrrm
TMINimum
T1?E

UPLoad
VALid
VAIUPlitude
VAXis
VBASe
\N\'IAX
VIVIIN
I/PP

\IRUNS
VToP
WIDTh
XCONdition
)ilNCrement
XORigin
XOTag
XOTime
XPATtern
XREFerence
XSEarch
XSTate
XTAG
XTIMe
YINCrement
YORigin
YREFerence

MMEMory, STRace
STRace
SLISI, TWAVeform
STRace
SFORmat, TFORmat
SLISI, TWAVeform
SLISI, TWAVeform
ACQuite, MACHine,
WAVeform
MMEMory
WAVeform
MEASure
SCHart
MEASure
MEASure
MEASure
MEASure
SLISI, TWAVeform
MEASrue
SYMBoI
TWAVeform
WAVeform
WAVeform
SLIST
TWAVeform
SLISI, TWAVeform
WAVeform
SLISI, TWAVeform
SLISI, WLIST
SLIST
TWAVeform, WLIST
WAVeform
WAVeform
WAVeform

HP 16s28/16s3B
Programming Reference

Programming and Documentation Conventions
+9

Table 4-2. Alphabetic Command Cross-Reference (continued)

Command I Where used Command I Where used

PATTern SYMBol, TRace STORe MMEMory, STRace
PERiod MEASure TAG STRace
POINts WAVeform TAVerage SLISt, TWAVeform
PPOWer System TERM STRace
PREamble WAVeform THReshold SFORmat, TFORmat
PREShoot MEASure TMAXimum SLISt, TWAVeform
PREStore STRace TMINimum SLISt, TWAVeform
PRINt System TYPE ACQuire, MACHine,
PROBe CHANnel WAVeform
PURGe MMEMory UPLoad MMEMory
PWiDth MEASure VALid WAVeform
RANGe CHANnel, COMPare, VAMPlitude MEASure

STRace, SWAVeform, VAXis SCHart
SYMBol, TIMebase, VBASe MEASure
TWAVeform VMAX MEASure

RECord WAVeform VMIN MEASure
REMove SFORmat, SWAVeform, VPP MEASure

Symbol, TFORmat, VRUNs SLISt, TWAVeform
TWAVeform VTOP MEASure

REName MMEMory WIDTh SYMBol
RESTart STRace XCONdition TWAVeform
RISetime MEASure XINCrement WAVeform
RMODe System XORigin WAVeform
RUNTil COMPare, SLISt, XOTag SLISt

WAVeform XOTime TWAVeform
SEQuence STRace XPATtem SLISt, TWAVeform
SETup System XREFerence WAVeform
SLAVe SFORmat XSEarch SLISt, TWAVeform
SLOPe TRIGger XSTate SLISt, WLISt
SMODe SCOPe XTAG SLISt
SOURce MEASure, TRIGger, XTIMe TWAVeform, WLISt

WAVeform YINCrement WAVeform
SPERiod TWAVeform YORigin WAVeform
STARt System YREFerence WAVeform
STOP System

HP 16528/16538
Programming Reference

Programming and Documentation Conventions
4-9

Comrnand Set
Organization

Subsystems

Programming and Documentation Conventions
+10

The comm3sd set for the HP L652B153B logic analyzer is divided into 24
separate groupsi common commands, system commands and 22 sets of
subsystem commands. Each of the 24 groups of cotnmands is described in
the following chapters. Each of the chapters contain a brief description of
the subsystem, a set of syntur diagrams for those commands, and fuuily,
the commands for that subsystem in alphabetical order. The commands
iue shown in the longform and shortform using uppsr and lowercase
letters. As an example AUToload indicates that the longfor. of the
command is AUTOLOAD and the shortform of the command is ALJT.
Each of the commands contain a description of the command and its
arguments, the command syxtax, and a programming eXample.

There iue 19 subsystems in this instrument. In the command tree (figure
+L) they iue shown as branches, with the node above showing the name of
the subsystem. Only one subsystem may be selected at a time. At power
on, the command parser is set to the root of the command tree, and
therefore no subsystem is selected. The 22 subsystems in the
HP 1652B'1538 are:

o SYSTem - controls some basic functions of the instrument.
o MMEMoT - provides access to the internal disk drive.
o DLIST - allows a@ess to the dual tisting function of two state

auoralyzers.

o WLIST - allows ac@ss to the mixed (tiningstate) functions.
o MACHine - provides access to analyzer functions and subsystems.
o SFORmat - allows access to the state format functions.
o STRace - allows access to the state trace functions.
o SLIST - allows access to the state listing functions.
o SWAVeform - allows access to the state waveforms functions.
o SCHart - allows access to the state chart functions.
o coMPare - allows access to the compare functions.
o TFORmat - allows access to the timirg format functions.
o TTRace - allows access to 1[s liming trace functions.
o TWAVeform - allows access to the timing waveforms functions.
o SYMBoI - allows access to the slmbol specification functions.
o SCOPe - provides access to oscilloscope functions and subsystems.
o CHANnel - provides access to the vertical axis of the oscilloscope
o TRIGger - allows control of the trigger conditions
o ACQuire - allows control of how the oscilloscope data is acquired.

HP 16s28/16538
Programming Reference

Command Set
Organization

Subsystems

The command set for the HP 1652B/53B logic analyzer is divided into 24
separate groups: common commands, system commands and 22 sets of
subsystem commands. Each of the 24 groups of commands is described in
the following chapters. Each of the chapters contain a brief description of
the subsystem, a set of syntax diagrams for those commands, and fmally,
the commands for that subsystem in alphabetical order. The commands
are shown in the longform and shortform using upper and lowercase
letters. As an example AUToload indicates that the longform of the
command is AUTOLOAD and the shortform of the command is AUT.
Each of the commands contain a description of the command and its
arguments, the command syntax, and a programming example.

There are 19 subsystems in this instrument. In the command tree (figure
4-1) they are shown as branches, with the node above showing the name of
the subsystem. Only one subsystem may be selected at a time. At power
on, the command parser is set to the root of the command tree, and
therefore no subsystem is selected. The 22 subsystems in the
HP 1652B/53B are:

• SYSTem - controls some basic functions of the instrument.
• MMEMory - provides access to the internal disk drive.
• DLISt - allows access to the dual listing function of two state

analyzers.
• WLISt - allows access to the mixed (timing/state) functions.
• MACHine - provides access to analyzer functions and subsystems.
• SFORmat - allows access to the state format functions.
• STRace - allows access to the state trace functions.
• SLISt - allows access to the state listing functions.
• SWAVeform - allows access to the state waveforms functions.
• SCHart - allows access to the state chart functions.
• COMPare - allows access to the compare functions.
• TFORmat - allows access to the timing format functions.
• TTRace - allows access to the timing trace functions.
• TWAVeform - allows access to the timing waveforms functions.
• SYMBol - allows access to the symbol specification functions.
• SCOPe - provides access to oscilloscope functions and subsystems.
• CHANnel - provides access to the vertical axis of the oscilloscope
• TRIGger - allows control of the trigger conditions
• ACQuire - allows control of how the oscilloscope data is acquired.

Programming and Documentation Conventions
4-10

HP 16528/16538
Programming Reference

o

a

TlMebase - allows control of the timebase (horizontal ards) of the
oscilloscope.
WAVeform - allows arcess to data transfer commands.
MEASure - allows you to control automated measurements.

Program
Examples

Note

HP 16s28/16538
Programming Reference

The program examples given for each command in the following chapters
and appendices were written on an HP 9000 Series ZffiBm controller
using the HP BASIC 4.0 language. The programs always assume a generic
address for the HP L652/53B of XXX.

In the following examples, special attention should be paid to the ways in
which the command and/or query can be sent. Keyvords can be sent
using either the longfonn or shortform (if one exists for that word). With
the exception of some string psrameters, the parser is not case-sensitive.
Upper-case (capital) aod lower-qme (snall) letters may be mixed freely.
System commands like HEADeT and LONGform allow you to dictate
what forms the responses take, but have no affect on how you must
structure your commands and queries.

The following sommands all set Timing Waveform Delay to 100 rns.

. keywords in longform, numbers using the decimal format.

0UTPUT XXX; " :MACHINEl :TIIAVEFORM:DELAY . 1"

o keyvords in shortfonn, numbers using an elponential format.

0UTPUT XXX; " : MACHI : TTJAV : DEL 1E-1"

. keyvords in shortform using lower-case letters, numbels using a
suffix

OUTPUT XXX; " :machl : twav: de I l,O0rns"

In these oxamples, the colon shown as the first character of the co-mand
is optional on the HP L6528153B.

The space between DELay and the argument is required.

Programming and Documentation Conventions
+11

Program
Examples

I!INote.

HP 16528/16538
Programming Reference

• TIMebase - allows control of the timebase (horizontal axis) of the
oscilloscope.

• WAVeform - allows access to data transfer commands.
• MEASure - allows you to control automated measurements.

The program examples given for each command in the following chapters
and appendices were written on an HP 9000 Series 200/300 controller
using the HP BASIC 4.0 language. The programs always assume a generic
address for the HP 1652/53B of xxx.

In the following examples, special attention should be paid to the ways in
which the command and/or query can be sent. Keywords can be sent
using either the longform or shortform (if one exists for that word). With
the exception of some string parameters, the parser is not case-sensitive.
Upper-case (capital) and lower-case (small) letters may be mixed freely.
System commands like HEADer and LONGform allow you to dictate
what forms the responses take, but have no affect on how you must
structure your commands and queries.

The following commands all set Timing Waveform Delay to 100 ms.

• keywords in longform, numbers using the decimal format.

OUTPUT XXX;":MACHINE1:TWAVEFORM:DELAY .1"

• keywords in shortform, numbers using an exponential format.

OUTPUT XXX;":MACH1:TWAV:DEL IE-I"

• keywords in shortform using lower-case letters, numbers using a
suffix.

OUTPUT XXX;":mach1:twav:del lOOms"

In these examples, the colon shown as the rust character of the command
is optional on the HP 1652B/53B.

The space between DELay and the argument is required.

Programming and Documentation Conventions
4-11

Ctt
I

o
o
3
3
o3
o
o
3
3g,

=CLo

("')
o
3
3
o
::;,
("')
o
3
3
S»
::;,
Q.
en

Common Commands

IntfOdUCtiOn The common commands are defined by the IEEE 488.2 standard. These
commands will be eornmon 1s all instrrrments that complywith this
standard.

The common comnands control some of the basic instrument functions,
such as instrument identification and reset, how status is read and cleare4
and how commands and queries are received and processed by the
instrument.

Common comnands can be received and processed by the HP 16528/538
whether they are sent over the bus by themselves or as part of a
multiple-command string. If an instrument subsyntem has been selected
and a co-mon command is received by the instrument, the instrument will
remrin in the selected subsystem. For example, if the instruction

':MMEMORY:|N]TIAL|ZE;rCLS; STORE'FILE','DESCRIPTION"

is received by the instrtrment, the instrument will initialize the disk and
store the file; and clear the status information. This would not be the case
if some other tlpe of command were received within the program
message. For dxample, the prograrn message

,: MM EMORY: I N ITIALIZE; : SYSTEM : H EADERS ON: MM EMORY

:STORE'FILE
"'DESCRIPTION"

would initialize the dish turn headers on, then store the file. In this
example :MMEMORY must be sent again in order to reenter the
mmemory subsystem and store the file.

HP 16528/16s38
Programming Reference

Common Commands
5-1

Common Commands 5
Introduction

HP 16528/16538
Programming Reference

The common commands are defmed by the IEEE 488.2 standard. These
commands will be common to all instruments that comply with this
standard.

The common commands control some of the basic instrument functions,
such as instrument identification and reset, how status is read and cleared,
and how commands and queries are received and processed by the
instrument.

Common commands can be received and processed by the HP 1652B/53B
whether they are sent over the bus by themselves or as part of a
multiple-command string. If an instrument subsystem has been selected
and a common command is received by the instrument, the instrument will
remain in the selected subsystem. For example, if the instruction

":MMEMORY:INITIALIZE;*CLS; STORE 'FILE_','DESCRIPTION'"

is received by the instrument, the instrument will initialize the disk and
store the fde; and clear the status information. This would not be the case
if some other type of command were received within the program
message. For example, the program message

":MMEMORY:INITIALIZE;:SYSTEM:HEADERS ON:MMEMORY
:STORE 'FILE_','DESCRIPTION'"

would initialize the disk, turn headers on, then store the file. In this
example :MMEMORY must be sent again in order to reenter the
mmemory subsystem and store the fde.

Common Commands
5-1

Common Commands
5-2

Each status register has an associated status enable (mask) register. By
setting the bits in the mask value you can select the status information you
wish to use. Any status bits that have not been masked (enabled in the
enable register) will not be used to report status summary information to
bits in other status registers.

Refer to appendix B, nstatus Reporting,n for a complete discussion of how
to read the status registers and how to use the status information available
from this instrument.

Refer to figure 5-1 for the common commands slmtax diagra-.

mask : An integer, 0 through 255. This number is the sum of all the bits in
the mask conespondingto conditions that are enabled. Refer to the*ESE and *SRE commands forbit definitions in the enable registen.

Figure $'1. Gommon Commands Syntax Diagram

HP 16528/16538
Programming Reference

Common Commands
5-2

Each status register has an associated status enable (mask) register. By
setting the bits in the mask value you can select the status information you
wish to use. Any status bits that have not been masked (enabled in the
enable register) will not be used to report status summary information to
bits in other status registers.

Refer to appendix B, "Status Reporting," for a complete discussion of how
to read the status registers and how to use the status information available
from this instrument.

Refer to figure 5-1 for the common commands syntax diagram.

• WAI ~------------
01650501

mask = An integer, 0 through 255. This number is the sum ofall the bits in
the mask co"esponding to conditions that are enabled. Refer to the
*ESE and *SRE commands for bit definitions in the enable registel~.

Figure 5-1. Common Commands Syntax Diagram

HP 16528/16538
Programming Reference

*cLs

*cLs

HP 16s28/16538
Programming Reference

(Clear Status) command

The *CIS conmon command clears the status data structures, including
the device defined eror queue. If the *CIS command immsfislsly
follows a <terminator>, the output queue and the MAV (Message
Available) bit will be cleared.

Command Syntax: *cLs

Example: ouTpuT xxX;"*cLS"

"or"
{$ }:ft."

appendix B, "Status Reporting;" for a complete discussion of

Cornmon Commands
$3

*CLS (Clear Status)

*CLS

command

Command Syntax:

Example:

I
Note'"

HP 16528/16538
Programming Reference

The ·CLS common command clears the status data structures, including
the device dermed error queue. If the ·CLS command immediately
follows a < terminator> , the output queue and the MAV (Message
Available) bit will be cleared.

·CLS

OUTPUT XXX;"*CLS"

Refer to appendix B, "Status Reporting," for a complete discussion of
status.

Common Commands
5-3

*ESE

*ESE

Common Commands
H

(Event Status Enable) command/query

The *RSE command sets the Standard Event Status Enable Register bits.
The Standard Event Status Enable Register contains a mask value for the
bits to be enabled in the Standard Event Status Register. A one in the
Standard Event Status Enable Register will enable the corresponding bit
in the Standard Event Status Register. A zero will disable the bit. Refer
to table SL for information about the Standard Event Status Enable
Register bits, bit weights, and what each bit masks.

The *ESE query returns the current contents of the enable register.

l\|ot" q!$ }:,tff..
appendix B, "Status Reporting" for a complete discussion of

Command Syntax: €SE <mask>

where:

< mask > :: = integer from 0 to 255

b<ample: ouTpuT xXX; "*ESE g?"

In this example, the *RSE 32 command will enable CME (Comtttand
Error), bit 5 of the Standard Event Status Enable Register. Therefore,
when a command error occurs, the event summary bit (ESB) in the Status
Byte Register will also be set.

HP 16s28/16538
Programming Reference

*ESE

*ESE (Event Status Enable) command/query

I
Nate II

Command Syntax:

where:

The *ESE command sets the Standard Event Status Enable Register bits.
The Standard Event Status Enable Register contains a mask value for the
bits to be enabled in the Standard Event Status Register. A one in the
Standard Event Status Enable Register will enable the corresponding bit
in the Standard Event Status Register. A zero will disable the bit. Refer
to table 4-1 for information about the Standard Event Status Enable
Register bits, bit weights, and what each bit masks.

The *ESE query returns the current contents of the enable register.

Refer to appendix B, "Status Reporting," for a complete discussion of
status.

*ESE <mask>

< mask> :: = integer from 0 to 255

Example: OUTPUT XXX; "*ESE 32"

In this example, the *ESE 32 command will enable CME (Command
Error), bit 5 of the Standard Event Status Enable Register. Therefore,
when a command error occurs, the event summary bit (ESB) in the Status
Byte Register will also be set.

Common Commands
5-4

HP 16528/16538
Programming Reference

*ESE

Query Syntax iEsE?

Returned Format: <mask> <NL>

Example: 1o DIm Event$ [1oo]
20 0UTPUT XXX; "*ESE?"

30 ENTER XXX; Event$

40 PR I t{T Event$

50 END

Table 5-1. Standard Event Status Enable Register

Bit Weight Enables

7

6
5

4
3
2
1

0

r2f,
&
32
16

8
4
2
1

PON - Power On
URQ - User Request
CME - Command Error
E)(E - Execution Error
DDE - Device Dependent Error
Qf/E - Query Error
RQC - Request Control
OPC - Operation Complete

High enables the ESR bit

HP 16s28/16538
Programming Reference

Common Commands
$5

Query Syntax: *ESE?

Returned Format: <mask> <NL>

Example: 10 DIM Event$ [100]
20 OUTPUT XXX;"*ESE?"
30 ENTER XXX;Event$
40 PRINT Event$
50 END

Table 5-1. Standard Event Status Enable Register

*ESE

Bit Weight Enables

7 128 PON - Power On
6 64 URQ - User Request
5 32 CME - Command Error
4 16 EXE - Execution Error
3 8 DDE - Device Dependent Error
2 4 QYE - Query Error
1 2 RQC - Request Control
0 1 OPC - Operation Complete

High - enables the ESR bit

HP 16528/16538
Programming Reference

Common Commands
5-5

*ESR

*ESR

Note I!$

Common Commands
5-6

(Event Status Register) query

The *E.SR query returns the contents of the Standard Event Status
Register. Readitg the register clears the Standard Event Status Register.

The bits in this register must be set by sending the *RSE command before
ssading the *ESR query (see '*ESE command/quer/ on page 54).

Query Syntax: rESR?

Returned Format: <status> <NL>

where:

< status > :: = inleger from 0 to 255

Example: l0 DIil Esr_eventg[100]
20 0UTPUT XXX;"*ESR?"

30 ENTER XXX;Esr_event$
40 PRIIIT Esr event$
50 El{o

With the exanple, if a command error has occurred the variable
nEsr_eventn will have bit 5 (the CME bit) set.

Table4-l2 shows the Standard Event Status Register. The table shows
each bit in the Standard Event Status Register, and the bit weight. When
you read Standard Event Status Register, the value returned is the total bit
weights of all bits that are high s1 the time you read the byte.

HP 16s28/16538
Progra mrning Reference

*ESR

*ESR (Event Status Register) query

Note fi
Query Syntax:

Returned Format:

where:

The *ESR query returns the contents of the Standard Event Status
Register. Reading the register clears the Standard Event Status Register.

The bits in this register must be set by sending the *ESE command before
sending the *ESR query (see "*ESE command/query" on page 5-4).

*ESR?

< status> < NL>

< status> :: = integer from 0 to 255

Example: 10 DIM Esr_eventS [100]
20 OUTPUT XXX;"*ESR?"
30 ENTER XXX;Esr_event$
40 PRINT Esr_event$
50 END

With the example, if a command error has occurred the variable
"Esr_event" will have bit 5 (the CME bit) set.

Table 4-2 shows the Standard Event Status Register. The table shows
each bit in the Standard Event Status Register, and the bit weight. When
you read Standard Event Status Register, the value returned is the total bit
weights of all bits that are high at the time you read the byte.

Common Commands
5-6

HP 16528/16538
Programming Reference

*ESR

Table *2. The Standard Event Status Register.

BIT BIT
WEIGHT

BIT
NAII{E

CONDITION

7

6

5

4

3

2

L

0

L?3

&
32

16

8

4

2

1

PON

URQ
CME

E)(E

DDE

Qre

RQC
OPC

0 : Register read - not in power up mode
1 : Power up
0 : user request - not used - always zero
0 : no command erTors
1 : a command error has been detected
0 : no execution erors
1 : an execution error has been detected
0 : no device dependent errors
L : a device dependent error has been detected
0 : no query errors
1 : a query error has been detected
0 : request control - NOT used - always 0

0 - operation is not complete
1 : operation is complete

0:False:Low
1-True:Higb

HP 1652B.116s38
Programming Relerence

Common Commands
5-7

Table 5-2. The Standard Event Status Register.

*ESR

BIT BIT BIT CONDITION
WEIGHT NAME

7 128 paN o = Register read - not in power up mode
1 = Power up

6 64 URO o = user request - not used - always zero
5 32 CME o = no command errors

1 = a command error has been detected
4 16 EXE o = no execution errors

1 = an execution error has been detected
3 8 DDE o = no device dependent errors

1 = a device dependent error has been detected
2 4 OYE o = no query errors

1 = a query error has been detected
1 2 ROC o = request control- NOT used - always 0
0 1 ope o= operation is not complete

1 = operation is complete

o = False = Low
1 = True = High

HP 16528/16538
Programming Reference

Common Commands
5-7

*IDN

*IDN

Common Commands
$8

(ldentification Number) query

The *IDN? query allows the instrument to identiS itself. It returns the
string:

"HEULETT-PACKARD.16528,0,REV <revision cods>"

An *IDN? query must be the last query in a message. Any queries after
the *IDN? in the program message will be ignored.

Query Syntax: rrDN?

Retumed Format: HEWLETT.PACKAFD,l6s2B,o,REl/ <revisioncode>

where:

< revision code > :: = fourdigit code representing ROM revision

Example: 10 DrM rdg [1oo]
20 OUTPUT XXX ; "* I DN?"

30 ENTER XXX; Id$

40 PRINT Id$

50 END

HP 1652B./16s38
Programming Reference

*IDN

*IDN (Identification Number) query

The *IDN? query allows the instrument to identify itself. It returns the
string:

"HEWLETT-PACKARD, 16528,0, REV < revision code>"

An *IDN? query must be the last query in a message. Any queries after
the *IDN? in the program message will be ignored.

Query Syntax: *IDN?

Returned Format: HEWLETT·PACKARD,1652B,O,REV < revision code>

where:

< revision code>

Example:

Common Commands
5-8

:: = four-digit code representing ROM revision

10 DIM Id$ [100J
20 OUTPUT XXX;"*IDN?"
30 ENTER XXX;Id$
40 PRINT Id$
50 END

HP 16528/16538
Programming Reference

*oPc

*oPc

HP 16s2Bl16538
Programming Reference

(Operation Gomplete) command/query

The *OPC command will cause the instrument to set the operation
complete bit in the Staudard Event Status Register when all pending
device operations have finished. The commands which affect this bit are
the Overlapped Commands. An Overlapped Command is a command
that allows execution of subsequent commands while the device
operations initiated by the Overlapped Command are still in progress.
The overlapped commands for the HP 16528/538 are:

START

STOP

AuToscale

The *OPC query places an ASCII "1" in the output queue when all
pending device operations have been completed.

Command Syntax: ioPc

Example: oUTpuT XXX; "*gpg"

Query Syntax: roPc?

Returned Format: r<NL>

Example: 1o DIM statusg [1oo]
20 OUTPUT XXX; "*0PC?"

30 ENTER XXX; Status$
40 PRINT Status$

50 END

Common Commands
$9

*OPC (Operation Complete)

*OPC

command/query

Command Syntax:

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

The ·OPC command will cause the instrument to set the operation
complete bit in the Standard Event Status Register when all pending
device operations have fmished. The commands which affect this bit are
the Overlapped Commands. An Overlapped Command is a command
that allows execution of subsequent commands while the device
operations initiated by the Overlapped Command are still in progress.
The overlapped commands for the HP 1652B/53B are:

STARt

STOP
AUToscaie

The ·OPC query places an ASCII "1" in the output queue when all
pending device operations have been completed.

*OPC

OUTPUT XXX;"*OPC"

*OPC?

1<NL>

10 DIM Status$[100]
20 OUTPUT XXX;"*OPC?"
30 ENTER XXX;Status$
40 PRINT Status$
50 END

Common Commands
5-9

*RST

*RST

Common Commands
5-1 0

(Reset) command

The *RST comnand (488.2) sets the HP 1652B,/538 to the power-up
default ssftings as if no autoload file was present.

Command Syntax: *RST

Example: ouTpuT xxx; "*RST"

HP 16528/16538
Programming Reference

*RST

*RST (Reset) command

Command Syntax:

Example:

Common Commands
5-10

The *RST command (488.2) sets the HP 1652B/53B to the power-up
default settings as if no autoload rue was present.

*RST

OUTPUT XXX;"*RST"

HP 16528/16538
Programming Reference

*SRE

*SRE

HP 16s28/16538
Programming Relerence

(Service Request Enable) command/guery

The *SRE command sets the Service Request Enable Register bits. The
Service Request Enable Register contains a mask value for the bits to be
enabled in the Status Byte Register. A one in the Service Request Enable
Register will enable the corresponding bit in the Status Byte Register. A
zero will disable the bit. Refer to table 5-3 for the bits in the Service
Request Enable Register and what they mask.

The *SRE query returns the current value.

ruOte {$ }:tf::..
appendixB, "status Reporting," for a complete discussion of

Command Syntax: *SRE < mask >

where:

< mask > :: = integer from 0 to 255

Example: 0UTPUT XXX ; "*sRE 16"

This example forces the MAV bit high (see table 5-3).

Common Commands
5-11

*SRE (Service Request Enable)

*SRE

command/query

I
Note 0

Command Syntax:

where:

The *SRE command sets the Service Request Enable Register bits. The
Service Request Enable Register contains a mask value for the bits to be
enabled in the Status Byte Register. A one in the Service Request Enable
Register will enable the corresponding bit in the Status Byte Register. A
zero will disable the bit. Refer to table 5-3 for the bits in the Service
Request Enable Register and what they mask.

The *SRE query returns the current value.

Refer to appendix B, "Status Reporting," for a complete discussion of
status.

*SRE <mask>

< mask> :: = integer from 0 to 255

Example: OUTPUT XXX; "*SRE 16"

This example forces the MAV bit high (see table 5-3).

HP 16528/16538
Programming Reference

Common Commands
5-11

*SRE

Query Syntax: *sRE?

Returned Format: < mask

where:

< mask > l! = surn of all bits that are set - 0 through 2Ss

Example: 1o DIt't Sre_va lue$ tlool
20 0UTPUT XXX; "*SRE?"

30 ENTER XXX; Sre_va lue$

40 PRINT Sre value$
50 END

Table 5-3. HP 16528/538 Service Request Enable Register

Bit lVeight Enables

15-8
7
6
5
4
3

2
1

0

L?3

ffi
32
L6

8
4
2
1

not used
not used
MSS - Master Sumnary Status
ESB - Event Status
N{AV - Message Available
not used
not used
LCL - L-cal
MSB - Module Summry

Common Commands
5--l2

HP 16528/16s38
Programming Reference

*SRE

Query Syntax: *SRE?

Returned Format: <mask> <NL>

where:

< mask> :: = sum of all bits that are set - 0 through 255

Ejaannple: 10 DIM Sre_value$[100]
20 OUTPUT XXX;"*SRE?"
30 ENTER XXX;Sre_value$
40 PRINT Sre_value$
50 END

Table 5-3. HP 16528/538 Service Request Enable Register

Bit Weight Enables

15-8 not used
7 128 not used
6 64 MSS - Master Summary Status
5 32 ESB - Event Status
4 16 MAV - Message Available
3 8 not used
2 4 not used
1 2 LCL - Local

0 1 MSB - Module Summary

I

Common Commands
5-12

HP 16528/16538
Programming Reference

*STB

*STB

HP 16s28/16538
Programming Reference

Query Syntax: rsTB?

Returned Format: < vatue > < NL >

query(Status Byte)

The *STB query refurns the current value of the instrument's status byte.
The MSS (Master Summary Status) bit and not RQS (Request Service)
bit is reported on bit 6. The MSS indicates whether or not the device has
at least one reason for requestirg service. Refer to table 5-4 for the
psaning of the bits in the status bytr.

not" S l:fff..
appendix B, nstatus Reporting,n for a complete discussion of

where:

<value > :: = integer from 0 to 255

Example: 1o D I l-t Stb_va I ue$ tlo0l
20 OUTPUT XXX; "*STB?"

30 ENTER XXX; Stb_va I ue$

40 PR I NT Stb va 1 ue$

50 END

Common Commands
$13

*STB (Status Byte)

*STB

query

Query Syntax:

Returned Format:

where:

<value>

Example:

HP 16528/16538
Programming Reference

The ·STB query returns the current value of the instrument's status byte.
The MSS (Master Summary Status) bit and not RQS (Request Service)
bit is reported on bit 6. The MSS indicates whether or not the device has
at least one reason for requesting service. Refer to table 5-4 for the
meaning of the bits in the status byte.

Refer to appendix B, "Status Reporting," for a complete discussion of
status.

*STB?

<value> <NL>

:: = integer from 0 to 255

10 DIM Stb_value$[100]
20 OUTPUT XXX;"*STB?"
30 ENTER XXX;Stb_value$
40 PRINT Stb_value$
50 END

Common Commands
5-13

*STB

Table 5-4. The Status Byte Register

BIT BIT
WEIGHT

BIT
NAIVIE

CONDITION

7

6

5

4

3

2

L

0

L28
&

32

L6

8

4

2

1

MSS

ESB

MAV

LCL

MSB

0 : not used
0 : instrument has no reason for service
1 - instrument is requesting service
0 : no event status conditions have occurred
1 : an enabled event status condition has occured
0 : no output messages are ready
1 : an output message is ready
not used
not used
0 : a remote-to-local transition has not occurred
1 - a remote-to-local transition has occurred
0 _ HP L652811653B has activity to report
1 _ no actiuity to report

0:False:Low
1-True-High

Common Commands
5-1 4

HP 16s28/16s38
Programming Reference

*STB

Table 5-4. The Status Byte Register

BIT BIT BIT CONDITION
WEIGHT NAME

7 128 --- o = not used
6 64 MSS o = instrument has no reason for service

1 = instrument is requesting service
5 32 ESB o = no event status conditions have occurred

1 = an enabled event status condition has occured
4 16 MAV o = no output messages are ready

1 = an output message is ready
3 8 not used
2 4 --- not used
1 2 LCL o = a remote-to-Iocal transition has not occurred

1 = a remote-to-Iocal transition has occurred
0 1 MSB o = HP 1652B/1653B has activity to report

1 = no activity to report

o = False = Low
1 = True = High

Common Commands
5-14

HP 16528/16538
Programming Reference

*wAl

*WAl (wait)

HP 16528/16538
Programming Reference

The *WAI command sauries the device to wait until the completion of all
overlapped commands before executing any furtier comnands or queries.
An overlapped command is a command that allows execution of
subsequent commands while the device operations initiated by the

il:l$il!#r1tnr;ln;lare
still in progress. rhe overlapped com-ands for

START

STOP

AUToscale

Command Syntax: r\ rAl

Example: 0UTPUT xxx; "*h,AI "

command

Common Commands
5-1 5

*WAI (Wait)

·WAI

command

Command Syntax:

Example:

HP 16528/16538
Programming Reference

The ·WAI command causes the device to wait until the completion of all
overlapped commands before executing any further commands or queries.
An overlapped command is a command that allows execution of
subsequent commands while the device operations initiated by the
overlapped command are still in progress. The overlapped commands for
the HP 1652B/53B are:

STARt
STOP
AUToscaie

*WAI

OUTPUT XXX;"*WAI"

Common Commands
5-15

System Commands

Introduction

HP 16s28/16s38
Programming Reference

System commands control the basic operation of the instrument including
formatting query responses and enabling reading aod writing to the
advisory line of the instrument's display. They can be called at anytime.
The HP L652B|53B System mmmands are:

o ARMBnc
o DATA
o DSP (display)
o ERRor
o HEADeT
o KEY
o LER (I'ocal Event Register)
o LOCKout
o LONGform
o MENU
o MESE
o MESR
o PRINT
o SETUp

In addition to the system commands, there is are three run control
commands and a preprocessor power supply condition query. These
commands are:

. PPOWeT
o RMODe
o START
o STOP

The run control commands can be called at anytime and also control the
basic operation of the logic analyzer. These commands are at the same
level in the command tree as SYSTem; therefore they are not preceded by
the :SYSTem header.

System Commands
&1

System Commands 6
Introduction

HP 16528/16538
Programming Reference

System commands control the basic operation of the instrument including
formatting query responses and enabling reading and writing to the
advisory line of the instrument's display. They can be called at anytime.
The HP 1652B/53B System commands are:

• ARMBnc
• DATA
• DSP (display)
• ERRor
• HEADer
• KEY
• LER (Local Event Register)
• LOCKout
• LONGform
• MENU
• MESE
• MESR
• PRINt
• SETup

In addition to the system commands, there is are three run control
commands and a preprocessor power supply condition query. These
commands are:

• PPOWer
• RMODe
• STARt
• STOP

The run control commands can be called at anytime and also control the
basic operation of the logic analyzer. These commands are at the same
level in the command tree as SYSTem; therefore they are not preceded by
the :SYSTem header.

System Commands
6-1

s poce oFFla

Figure &1. System Commands Syntax Diagram

System Commands
62

HP 16528.116538
Programming Reference

o16SOS08

System Commands
6-2

Figure 6-1. System Commands Syntax Diagram

HP 16528/16538
Programming Reference

REPetitive

enob I e-mcsk

block doto in # formot

value = integerfrom 0 to 255.
menu : integer. Refer to the individual programming manuals for each module and the system for

specific menu number definitions.
enable_value : integer from 0 to 255.
index : integerfrom0n 5.

block_data : data in IEEE 483.2 fonnat.
string : string of up to 60 alphonumeic choracten.

Figure Fl. System Commands Syntax Diagram (continued)

HP 16528/16s38
Programming Reference

System Commands
&3

SETup? 1------------------------'

SING I e I------r---------------------t~

01650511

value = integer from 0 to 255.
menu = integer. Refer to the individualprogramming manuals for each module and the system for

specific menu number definitions.
enable_value = integerfrom 0 to 255.
index = integerfrom 0 to 5.
block_data = data in IEEE 488.2 format.
string = string ofup to 60 alphanumeric characters.

Figure 6-1. System Commands Syntax Diagram (continued)

HP 16528/16538
Programming Reference

System Commands
6-3

ARMBnc

ARMBnc

System Commands
6-4

command/query

The ARMBnc command selects the source that will generate the arm out
sipal that will appear on the rear panel BNC labelled External Trigger
Out.

The ARMBnc query returns the source currently selected.

Command Syntax: :SYSTem:ARMBnc {MACHine{l12}lSCOPe I NONE}

Example: 0UTPUT xXX; " : SySTEM:ARMBNC MACHINEl"

Query Syntaxl :SYSTem:ARMBnc?

Returned Format: [:SYSTem:ARMBnc] {MACHine{ 112.1lSCOPe INONE} < NL>

Example: to DIM Mode$ [too]
20 OUTPUT XXX; " : ARMBNC?"

30 ENTTR XXX;Mode$

40 PR I NT Mode$

50 END

HP 16528/16s38
Programming Reference

ARMBnc

ARMBnc

Command Syntax:

Example:

Query Syntax:

Returned Format:

Example:

System Commands
6-4

command/query

The ARMBnc command selects the source that will generate the arm out
signal that will appear on the rear panel BNC labelled External Trigger
Out.

The ARMBnc query returns the source currently selected.

:SYSTem:ARMBnc {MACHine{112} ISCOPe I NONE}

OUTPUT XXX;":SYSTEM:ARMBNC MACHINEl"

:SYSTem:ARMBnc?

[:SYSTem:ARMBnc] {MACHine{112}ISCOPe INONE}<NL>

10 DIM Mode$[100]
20 OUTPUT XXX;":ARMBNC?"
30 ENTER XXX;Mode$
40 PRINT Mode$
50 END

HP 16528/16538
Programming Reference

DATA

DATA

Note II$

Note tI$

HP 16s28/16538
Programming Reference

command/query

The DATA command allows you to send and receive acquired data to and
from a controller in block form. This helps saving block data for:

o Re-loadiog to the logic analyer
o Processing data later
o Processing data in the controller.

The format and length of block data depends on the instruction being
used and the configuration of the instrument. This section describes each
part of the block data as it will appear when used by the DATA
instruction. The beginning byte number, the length in bytes, and a short
description is given for each part of the block data. This is intended to be
used primarily for processing of data in the controller.

Do not change the block data in the controller if you intend to send the
block data back into the logic analyzer for later processing. Changes
made to the block data in the controller could have unpredictable results
when sent back to the logic analyer.

The SYSTen:DATA query returns the block data.

The data sent by the SYSTen:DATA query reflects the configuration of
the machines when the last run was performed. Any changes made since
then througb either front-panel operations or progrsmming commands do
not affect the stored configuration.

System Commands
&5

DATA

I
Note"

I
Note"

HP 16528/16538
Programming Reference

DATA

command/query

The DATA command allows you to send and receive acquired data to and
from a controller in block form. This helps saving block data for:

• Re-Ioading to the logic analyzer
• Processing data later
• Processing data in the controller.

The format and length of block data depends on the instruction being
used and the configuration of the instrument. This section describes each
part of the block data as it will appear when used by the DATA
instruction. The beginning byte number, the length in bytes, and a short
description is given for each part of the block data. This is intended to be
used primarily for processing of data in the controller.

Do not change the block data in the controller if you intend to send the
block data back into the logic analyzer for later processing. Changes
made to the block data in the controller could have unpredictable results
when sent back to the logic analyer.

The SYSTem:DATA query returns the block data.

The data sent by the SYSTem:DATA query reflects the configuration of
the machines when the last run wac; performed. Any changes made since
then through either front-panel operations or programming commands do
not affect the stored configuration.

System Commands
6-5

DATA

System Commands
F6

For the DATA instruction, block data consists of either 14506 bytes
containing logic analyzer only information or 26794 bytes containing both
logic analyzer and oscilloscope information. This information is captured
by the acquisition systems. The information for the logic analyzer will be
in one of four formats depending on the type of data captured. The logic
analpr format is described in the "Acquisition Data Description" section
io 'I-ogc Analyer Block Data." The oscilloscope format is described in
the "Acquisition Data Description" section in "Oscilloscope Block Data."
Since no parameter checking is performed, out-of-range values could
cause instrument lockup; therefore, care should be taken when
transferring the data string into the HP L65281538.

The < block data > porameter can be broken down into a
< block length specifier > and a variable number of < sectiotr) s.

The < block length specifier > always takes the form #SDDDDDDDD.
Each D represents a digit (ASCII characters "0" through "9"). The value of
the eight digits represents the total length of the block (all sections). For
example, if the total length of the block is L4522 bytes, the block length
specifier would be "#8000L4522u.

Each <section> consistsof a <sectionheader> and <sectiondata>.
The < section data > format varies for each section and may be any
length. For this instruction, the < section data > section is composed of a
data preamble section and an acquisition data section.

HP 16s28/16538
Programming Reference

DATA

System Commands
6-6

For the DATA instruction, block data consists of either 14506 bytes
containing logic analyzer only information or 26794 bytes containing both
logic analyzer and oscilloscope information. This information is captured
by the acquisition systems. The information for the logic analyzer will be
in one of four formats depending on the type of data captured. The logic
analyzer format is described in the "Acquisition Data Description" section
in "Logic Analyzer Block Data." The oscilloscope format is described in
the "Acquisition Data Description" section in "Oscilloscope Block Data."
Since no parameter checking is performed, out-of-range values could
cause instrument lockup; therefore, care should be taken when
transferring the data string into the HP 1652B/53B.

The < block data> parameter can be broken down into a
< block length specifier> and a variable number of < section> s.

The < block length specifier> always takes the form #8DDDDDDDD.
Each D represents a digit (ASCII characters "0" through "9"). The value of
the eight digits represents the total length of the block (all sections). For
example, if the total length of the block is 14522 bytes, the block length
specifier would be "#800014522".

Each < section> consists of a < section header> and < section data> .
The < section data> format varies for each section and may be any
length. For this instruction, the < section data> section is composed of a
data preamble section and an acquisition data section.

HP 16528/16538
Programming Reference

DATA

Command Syntari :SYSTem:DATA < block data >

Example: OUTPUT xxx;":SYSTEM:DATA" <block data>

where:

< block data > :: = < block length specifier > < section > ...

< block longth sp€cifier > :: = #8 < length >
<length > :: = lhe total length ot all sections in byte format (must be represented wiih 8 digits)

<sec'tion> ::= <s€ction header> <section data>
<eection header> :: = 16 bytes, described in the lollowing 'Section Header' sections

< s€ction data > :: = lormat depends on the type of data

- t;gl The total length of a section is 16 (for the section header) plus the length
NOte f ofthesectiondata. Sowhencalculatingthevalue for <length>, don't

forget to include the length of the section headers.

QuerySyntax: :SYSTem:DATA?

Returned Format: [:SYSTem:DATA] < block data > < NL >

HP{B Example: l0 DIl,l tlumt[z], Block$[32000] ! allocate enough menory for block data
20 OUTPUT XXX;":SYSTEH:HEAD OFF'

30 OUTPUT XXX;":SYSTEH:DATA?" ! send data query

40 E}ITER XXX USING "J,2A";Num$ lread in #8

50 EI{TER XXX USING "*,80";Blocklength! read in block length
50 EiITER XXX USING "-K";Block$! read in data

70 EilD

HP 16s28/16538
Programming Reference

System Commands
67

DATA

Command Syntax: :SYSTem:DATA <block data>

Example: OUTPUT XXX;":SYSTEM:DATA" <block data>

where:

< block data >

< block length specifier>

<length>

<section>

< section header>

< section data >

I
Note"

Query Syntax:

Returned Format:

HP-IB Example:

HP 16528/16538
Programming Reference

:: = < block length specifier> < section> ...

:: = #8 < length>

:: = the total length of all sections in byte format (must be represented with 8 digits)

:: = < section header> < section data>

:: = 16 bytes, described in the following ·Section Header" sections

:: = format depends on the type of data

The total length of a section is 16 (for the section header) plus the length
of the section data. So when calculating the value for < length> , don't
forget to include the length of the section headers.

:SYSTem:DATA?

[:SYSTem:DATA] <block data> <NL>

10 DIM Num$[2] , Block$[32000] allocate enough memory for block data

20 OUTPUT XXX;":SYSTEM:HEAD OFF"
30 OUTPUT XXX;":SYSTEM:DATA?" send data query

40 ENTER XXX USING "',2A";Num$!read in #8

50 ENTER XXX USING "',8D";Blocklength! read in block length

60 ENTER XXX USING "-K";Block$! read in data

70 END

System Commands
6-7

DATA

Logic Analyzer
Block Data

The logic aoalyter block data is described in the following sections. The
oscilloscope block data is appended at the end of the logic analyzer block
data when the oscilloscope is on and has acquired and stored waveform
data. The oscilloscope block data is described in "Oscilloscope Block
Data" later in this section.

The section header uses bytes 1 through 16 (this qanual begins counting
at L; there is no byte 0). The 16 bytes of the section header iue as follows:

10 bytes - section nattte, such as "DATA " (six 6ailing spaces)

I byte - reserved

1. bytes - module ID (31 for HP L652B153B)

4 bytes - length (14506 for the logic analyzer only and 26794 for both the
logic analyznr and oscilloscope).

For the SYSTem:DATA oommand, the < section data > p?rameter
consists of two parts: the data preamble and the acquisition data. These
are described in the following two sections.

The block data is organized as 160 bytes of preamble information,
followed by 1024 L*byte groups of information, followed by 10 reserved
bytes. The preamble gives information for each analyzer describing the
amount and tlpe of data capture4 where the trace point occurred in the
data, which pods are assrgned to which analper, and other information.

Each la-byte group is made up of nvo bytes (16 bits) of status for
Analyzer 1, two bytes of status for Analyzer 2, then five sets of nvo bytes of
information for each of the five 16-bit pods of the HP L652B.In the
HP 16538, the status and format for the sets of bytes are the same, but the
data in not valid on pods 3, 4, and 5.

HP 16s28/16538
Programming Reference

Section Header
Description

1

11

12

13

Section Data

Data Preamble
Description

System Commands
6-8

DATA

Logic Analyzer
Block Data

Section Header
Description

The logic analyzer block data is described in the following sections. The
oscilloscope block data is appended at the end of the logic analyzer block
data when the oscilloscope is on and has acquired and stored waveform
data. The oscilloscope block data is described in "Oscilloscope Block
Data" later in this section.

The section header uses bytes 1 through 16 (this manual begins counting
at 1; there is no byte 0). The 16 bytes of the section header are as follows:

11

10 bytes - section name, such as "DATA

1 byte - reserved

" (six trailing spaces)

12

13

Section Data

Data Preamble
Description

System Commands
6-8

1 bytes - module ID (31 for HP 1652B/53B)

4 bytes -length (14506 for the logic analyzer only and 26794 for both the
logic analyzer and oscilloscope).

For the SYSTem:DATA command, the <section data> parameter
consists of two parts: the data preamble and the acquisition data. These
are described in the following two sections.

The block data is organized as 160 bytes of preamble information,
followed by 1024 14-byte groups of information, followed by 10 reserved
bytes. The preamble gives information for each analyzer describing the
amount and type of data captured, where the trace point occurred in the
data, which pods are assigned to which analyzer, and other information.

Each 14-byte group is made up of two bytes (16 bits) of status for
Analyzer 1, two bytes of status for Analyzer 2, then five sets of two bytes of
information for each of the five 16-bit pods of the HP 1652B. In the
HP 1653B, the status and format for the sets of bytes are the same, but the
data in not valid on pods 3, 4, and 5.

HP 16528/16538
Programming Reference

DATA

Note ltf,

Note {$

HP 16s28/16s38
Programming Relerence

17

19

One nalyzer's information is independent of the other analyzer's
information. In other words, oD any given line, one alrral1'zer may contain
data information for a timing machine, while the other arrralyzer may
contain count information for a state 6sshine with time tags enabled. The
status bytes for each analyzer describe what the information for that line
contains. Therefore, when describing the different formats that data may
contain below, keep in mind that this format pertains only to those pods
that are assigned to the analyzer of the specified type. The other analper's
data is TOTALLY independent and conforms to its own format.

The preamble (bytes 17 through L76) consists of the following 160 bytes:

2 bytes - Instrument ID (always L652for HP L6528 and HP 16538)

2 bytes - Revision Code

The values stored in the preamble represent the captured data currently
stored in this structure and not what the current configuration of the
analper is. For example, the mode of the data (bytes 2I and99) may be
STATE with tagging, while the current setup of the analyzer is TIMING.

The next 78 bytes are for An alyzer 1 Data Information.

1 byte - Machine data mode, one of the following values:
0:off
1 : state data (with either time or state tags)
2 : state data (without tags)
3 : glitch timing data
4 - transitional liming data

1 byte - List of pods in this nalyzer, where a 1 indicates that the
corresponding pod is assigned to this analyzer.

birS hitT hir6 bir5 hir4 bir3 bir2 birl
unused unused Pod L Pod 2 Pod 3 Pod 4 Pod 5 unused

System Commands
&9

21

I
Note III

17

19

I
Note III

DATA

One analyzer's information is independent of the other analyzer's
information. In other words, on any given line, one analyzer may contain
data information for a timing machine, while the other analyzer may
contain count information for a state machine with time tags enabled. The
status bytes for each analyzer describe what the information for that line
contains. Therefore, when describing the different formats that data may
contain below, keep in mind that this format pertains only to those pods
that are assigned to the analyzer of the specified type. The other analyzer's
data is TOTALLY independent and conforms to its own format.

The preamble (bytes 17 through 176) consists of the following 160 bytes:

2 bytes - Instrument ID (always 1652 for HP 1652B and HP 1653B)

2 bytes - Revision Code

The values stored in the preamble represent the captured data currently
stored in this structure and not what the current configuration of the
analyzer is. For example, the mode of the data (bytes 21 and 99) may be
STATE with tagging, while the current setup of the analyzer is TIMING.

The next 78 bytes are for Analyzer 1 Data Information.

21 1 byte - Machine data mode, one of the following values:
o = off
1 = state data (with either time or state tags)
2 = state data (without tags)
3 = glitch timing data
4 = transitional timing data

22 1 byte - List of pods in this analyzer, where a 1 indicates that the
corresponding pod is assigned to this analyzer.

bit 8
unused

bit 7
unused

bit 6
Pod 1

bit 5
Pod 2

bit 4
Pod 3

bit 3
Pod 4

bit 2
PodS

bit 1
unused

HP 16528/16538
Programming Reference

System Commands
6-9

DATA

23 1 blt€ - Master chip in this analyzer - When several chips are grouped
together in a single anallzer, one chip is designated as a master chip. This
byte identifies the master chip. A value of 4 represents POD 1, 3 for POD
2,2 for POD 3, L for POD 4, and 0 for POD 5"

1 byte - Resenred

10 b)'tes - Number of rows of valid data fs1 this analyznr - Indicates the
n 'mber of rows of valid data for each of the five pods. TWo bytes are used
to store each pod value, with the fust 2 bytes used to hold POD 5 value
the next ?f.or POD 4 value, ild so on.

1 bytr - Trace point seen in this analyzer - Was a trace point seen (value
: 1) or forced (value - 0)

1 blte - Reserved

10 bytes - Trace point location for this analyzer - Indicates the row
number in which the trace point was fotrnd for each of the five pods. Two
bytes are used to store each pod value, with the first 2 bytes used to hold
POD 5 value, the ne:rt Zf.or POD 4 value, ild so on.

4 bytes - Time from ann to trigger for this analyzer - The number of 40 ns
ticks that have taken place from the arm sf this machine to the trigger of
this machine. A value of -1 (all 32 bie set to 1) indicates counter overflow.

1 byt€ - Armer sf this analyzer - Indicates what armed this analyznr (1 :
RUN,2 : BNC,3 : other analyzetr4: SCOPE)

1 byte - Devices anned by this analyzer - Bitmap of devices anned by this
machine

bir 8 bir 7 bit 6 bit 5 bir 4 bir 3 bitz bir 1

24

25

35

36

unused unused unused unused SCOPE BNC out Mach.2 Mach. 1

A 1 in a given bit position inplies that this analyzer arms that device,
while a 0 Eeans the device is not armed by this aaalyzer.

53 4 bytes - Sample pcriod for this analyzer (timing only) - Sample period at
which data was acquired. Value represents the number of nanoseconds
between samples.

HP 16528/16538
Programming Reference

37

47

51

52

System Commands
sl0

DATA

23 1 byte - Master chip in this analyzer - When several chips are grouped
together in a single analyzer, one chip is designated as a master chip. This
byte identifies the master chip. A value of 4 represents POD 1, 3 for POD
2, 2 for POD 3, 1 for POD 4, and 0 for POD 5.

24 1 byte - Reserved

25 10 bytes - Number of rows of valid data for this analyzer - Indicates the
number of rows of valid data for each of the five pods. Two bytes are used
to store each pod value, with the first 2 bytes used to hold POD 5 value,
the next 2 for POD 4 value, and so on.

35 1 byte - Trace point seen in this analyzer - Was a trace point seen (value
= 1) or forced (value = 0)

36 1 byte - Reserved

37 10 bytes - Trace point location for this analyzer - Indicates the row
number in which the trace point was found for each of the five pods. Two
bytes are used to store each pod value, with the fIrst 2 bytes used to hold
POD 5 value, the next 2 for POD 4 value, and so on.

47 4 bytes - Time from arm to trigger for this analyzer - The number of 40 ns
ticks that have taken place from the arm of this machine to the trigger of
this machine. A value of -1 (all 32 bits set to 1) indicates counter overflow.

51 1 byte - Armer of this analyzer - Indicates what armed this analyzer (1 =
RUN,2 = BNC,3 = other analyzer, 4 = SCOPE)

52 1 byte - Devices armed by this analyzer - Bitmap of devices armed by this
machine

bit 8
unused

bit 7
unused

bit 6
unused

bit 5
unused

bit 4 bit 3 bit 2 bit 1
SCOPE BNC out Mach.2 Mach. 1

System Commands
6-10

53

A 1 in a given bit position implies that this analyzer arms that device,
while a 0 means the device is not armed by this analyzer.

4 bytes - Sample period for this analyzer (timing only) - Sample period at
which data was acquired. Value represents the number of nanoseconds
between samples.

HP 16528/16538
Programming Reference

DATA

57

89

Acquisition Data
Description

HP 16528./16538
Programming Reference

61

4 bytes - Delay for this analyzer (timing only) - Delay at which data was
acquired. Value represents the amount of delay in nanoseconds.

1 byte - Time tags on (state with tagging only) - In state tagging mode, was
the data captured with time tags (value - 1) or state tags (value : 0).

1 byte - Reserved

5 bytes - Demultiplexing (state only) - For each of the five pods (first byte
is POD 5, fifth byte is POD 1) i" a state machine, describes multiplexing
of each of the five pods. (0 - NO DEMUX, 1 - TRUE DEMUX,Z -
MIXED CLOCKS).

1 byte - Reserved

20 bytes - Trace point adjustment for pods - Each pod uses 4 bytes to
show the number of nanoseconds that are to be subtracted from the trace
point described above to get the actual trace point value. The first 4 bytes
are for Pod 5, the next four are for Pod 4, and so on.

10 bytes - Reserved

The next 78 bytes are for Analyzer ZData Information. They are
organi-ed in the same manner as Aoalyzer 1. above, but they occupy bytes
99 througb L76

The acquisition data section consists of I43% bytes (102414-byte groups),
appeariog io bytes L77 througb L45I2. The last ten bytes (14513 through
L4522) are reserved. The data contained in the data section will appear in
one of four forms depending on the mode in which it was acquired (as

indicated in byte ?Lf.or machine L and byte 99 for machineZ). The four
modes are:

o State Data (without tags)
o State Data (with either time or state tags)
o Glitch Timing Data
o Transitional Timing Data

The following four sections describe the four data modes that may be
encountered. Each section describes the Status bytes (shown under the
Machine 1, and MachineZheadings), and the Information bytes (shoum
under the Pod 5 through Pod L headirgs).

System Gommands
sl1

DATA

57 4 bytes - Delay for this analyzer (timing only) - Delay at which data was
acquired. Value represents the amount of delay in nanoseconds.

61 1 byte - Time tags on (state with tagging only) - In state tagging mode, was
the data captured with time tags (value = 1) or state tags (value = 0).

62 1 byte - Reserved

63 5 bytes - Demultiplexing (state only) - For each of the five pods (first byte
is POD 5, fIfth byte is POD 1) in a state machine, describes multiplexing
of each of the five pods. (0 = NO DEMUX, 1 = TRUE DEMUX, 2 =
MIXED CLOCKS).

68 1 byte - Reserved

69 20 bytes - Trace point adjustment for pods - Each pod uses 4 bytes to
show the number of nanoseconds that are to be subtracted from the trace
point described above to get the actual trace point value. The first 4 bytes
are for Pod 5, the next four are for Pod 4, and so on.

89 10 bytes - Reserved

The next 78 bytes are for Analyzer 2 Data Information. They are
organized in the same manner as Analyzer 1 above, but they occupy bytes
99 through 176

Acquisition Data
Description

HP 16528/16538
Programming Reference

The acquisition data section consists of 14336 bytes (102414-byte groups),
appearing in bytes 177 through 14512. The last ten bytes (14513 through
14522) are reserved. The data contained in the data section will appear in
one of four forms depending on the mode in which it was acquired (as
indicated in byte 21 for machine 1 and byte 99 for machine 2). The four
modes are:

• State Data (without tags)
• State Data (with either time or state tags)
• Glitch Timing Data
• Transitional Timing Data

The following four sections describe the four data modes that may be
encountered. Each section describes the Status bytes (shown under the
Machine 1 and Machine 2 headings), and the Information bytes (shown
under the Pod 5 through Pod 1 headings).

System Commands
6-11

DATA

State Data
(without tags)

177

191

205

Status Bytes. In normal state mode, only the least significant bit (bit 1) is
used. When bit f is set, this means that there has been a sequence level
transition.

Information Bytes. In state acquisition with no tags, data is obtained from
the target system with each clock and checked with the trace specification.
If the state matches this specification, the data is stored, ffid is placed into
the memory.

Machine L Machine 2 Pod 5 Pod 4 Pod 3 Pod 2 Pod 1"*

Status Status Data Data Data Data Data
Status Status Data Data Data Data Data
Status Status Data Data Data Data Data

HP 16s28/1653B
Programming Reference

14/i9'g/ Status Status Data Data Data Data Data

*The headines are not a part of the returned data.

State Data (with either Status Bytes. In state tagging mode, the legs indicate whether a given row
time or state tags) of the data is a data line, a count (tag) line, or a prestore line.

Bit 2 is the Data vs. Count bit. Bit 3 is the Prestore vs. Tag bit. The two
bits together show what the corresponding Information bytes represent.

Bit 3 Bit 2 Information hyte represents:
0 0 Acquisition Data
0 1 Count
1 0 Prestore Data
1 1 Invalid

If Bit 2 is clear, the information soslains either actual acquisition data as

obtained from the target system (if Bit 3 is clear), or prestore data (if Bit 3
is set). If Bil 2 is set and Bit 3 is clear, this rou/s bytes for the pods
assigned to this machine contein tags. If Bit 2 and Bit 3 are set, the
corresponding Information bytes are invalid and should be ignored. Bit 1

is used only when Bit 2 is clear. Whenever there has been a sequence level
transition Bit l will be set. and otherwise will be clear.

System Commands
6-12

DATA

State Data
(without tags)

Status Bytes. In normal state mode, only the least significant bit (bit 1) is
used. When bit 1 is set, this means that there has been a sequence level
transition.

Information Bytes. In state acquisition with no tags, data is obtained from
the target system with each clock and checked with the trace specification.
If the state matches this specification, the data is stored, and is placed into
the memory.

Machine 1 Machine 2 Pod 5
177 Status Status Data
191 Status Status Data
205 Status Status Data

Pod 4
Data
Data
Data

Pod 3
Data
Data
Data

Pod 2
Data
Data
Data

Pod 1*
Data
Data
Data

14499 Status Status Data Data Data Data Data

*The headings are not a part of the returned data.

State Data (with either
time or state tags)

Status Bytes. In state tagging mode, the tags indicate whether a given row
of the data is a data line, a count (tag) line, or a prestore line.

Bit 2 is the Data vs. Count bit. Bit 3 is the Prestore vs. Tag bit. The two
bits together show what the corresponding Information bytes represent.

Bit 3
o
o
1
1

Bit 2
o
1
o
1

Information byte represents:
Acquisition Data
Count
Prestore Data
Invalid

System Commands
6-12

If Bit 2 is clear, the information contains either actual acquisition data as
obtained from the target system (if Bit 3 is clear), or prestore data (if Bit 3
is set). If Bit 2 is set and Bit 3 is clear, this row's bytes for the pods
assigned to this machine contain tags. If Bit 2 and Bit 3 are set, the
corresponding Information bytes are invalid and should be ignored. Bit 1
is used only when Bit 2 is clear. Whenever there has been a sequence level
transition Bit 1 will be set, and otherwise will be clear.

HP 16528/16538
Programming Reference

DATA

HP 1652B.,/16s38
Programming Reference

Information Bytes. In the State acquisition mode with togs, data is
obtained from the target system with each clock and checked with the
trace specification. If the state does not match the trace specification, it is
checked against the prestore qualifier. If it matches the prestore qualifier,
then it is placed in the prestore buffer. If the state does not match either
the sequencer qualifier or the prestore qualifier, it is discarded.

The tlpe of information in the bytes labeled Data depends on the Prestore
vs. Tags bit. When the Data bytes are used for prestore information, the
following Count bytes (in the same column) should be ignored. When the
Data bytes are used for t&gs, the Count bytes are formatted as

floating-point numbers in the following fashion:

hits L6 through 12 hits 1 1 through I

EEEEE MMMMMMMMMMM

The five most-significant bits (EEEEE) store the exponent, and the eleven
least-significant bits (MMMMMMMMMMM) store the manrissa. The
actual value for Count is given by the equation:

Count- (2048 + mantissa) x 2"Wnent -?n48

Since the counts are relative counts from one state to the one previous, the
count for the first state in the data structure is invalid.

If time tagging is on, the count value represents the number of 40
nanosecond ticks that have elapsed between the two stored states. In the
case of state tagging, the count represents the number of qualified states
that were encountered between the stored states.

If a state matches the sequencer qualifiers, the prestore buffer is checked.
If there are any states in the prestore buffer at this time, these prestore
states are first placed in memory, along with a dummy count row. After
this check, the qualified state is placed in memory, followed by the count
row which specified how many states (or 40 ns ticks) have elapsed since
the last stored state. If this is the first stored state in memory, then the
count information that is stored should be discarded.

System Commands
Gl3

DATA

Information Bytes. In the State acquisition mode with tags, data is
obtained from the target system with each clock and checked with the
trace specification. If the state does not match the trace specification, it is
checked against the prestore qualifier. If it matches the prestore qualifier,
then it is placed in the prestore buffer. If the state does not match either
the sequencer qualifier or the prestore qualifier, it is discarded.

The type of information in the bytes labeled Data depends on the Prestore
vs. Tags bit. When the Data bytes are used for prestore information, the
following Count bytes (in the same column) should be ignored. When the
Data bytes are used for tags, the Count bytes are formatted as
floating-point numbers in the following fashion:

bits 16 through 12
EEEEE

bits 11 through 1
MMMMMMMMMMM

HP 16528/16538
Programming Reference

The five most-significant bits (EEEEE) store the exponent, and the eleven
least-significant bits (MMMMMMMMMMM) store the mantissa. The
actual value for Count is given by the equation:

Count = (2048 + mantissa) x 2exponent - 2048

Since the counts are relative counts from one state to the one previous, the
count for the frrst state in the data structure is invalid.

If time tagging is on, the count value represents the number of 40
nanosecond ticks that have elapsed between the two stored states. In the
case of state tagging, the count represents the number of qualified states
that were encountered between the stored states.

If a state matches the sequencer qualifiers, the prestore buffer is checked.
If there are any states in the prestore buffer at this time, these prestore
states are first placed in memory, along with a dummy count row. After
this check, the qualified state is placed in memory, followed by the count
row which specified how many states (or 40 ns ticks) have elapsed since
the last stored state. If this is the first stored state in memory, then the
count information that is stored should be discarded.

System Commands
6-13

DATA

Machine 1 Machine 2 Pod 5 Pod 4 Pod 3 Pod 2 Pod 1*
177 Status
191 Status

205 Status
219 Status

Status Data Data Data Data Data
StatusAAA@@
Status Data Data Data Data Data
Status Count Count Count Count Count

14485 Status Status Data Data Data Data Data
14499 Status Status Count Count Count Count Count

The headings are not a part of the returned data.

@ : Invalid data

Glitch Timing Data Status Bytes. In glitch timing mode, the status bytes indicate whether a
given row in the data gsafain5 actual acquisition data inlbrmation or glitch
information.

Bit 1 is the Data vs. Glitch bit. If Bit f. is set, this row of information
contains glitch information. If Bit 1 is clear, then this row contains actual
acquisition data as obtained from the target system.

Information Bytes. In the Glitch timing mode, the target system is
sampled at every sample period. The data is then stored in memory and
the glitch detectors are checked. If a glitch has been detected between the
previous sample and the current 5emple, the corresponding glitch bits are
set. The glitch information is then stored. If this is the first stored sample
in memory then the glitch information stored should be discarded.

System Commands
&14

HP 16528.116538
Programming Reference

DATA

Machine 1 Machine 2 PodS Pod 4 Pod 3 Pod 2 Pod 1*
177 Status Status Data Data Data Data Data
191 Status Status @ ® ® ® ®
205 Status Status Data Data Data Data Data
219 Status Status Count Count Count Count Count

14485
14499

Status
Status

Status
Status

Data
Count

Data
Count

Data
Count

Data
Count

Data
Count

*The headings are not a part of the returned data.

® = Invalid data

Glitch Timing Data Status Bytes. In glitch timing mode, the status bytes indicate whether a
given row in the data contains actual acquisition data information or glitch
information.

Bit 1 is the Data vs. Glitch bit. If Bit 1 is set, this row of information
contains glitch information. If Bit 1 is clear, then this row contains actual
acquisition data as obtained from the target system.

Information Bytes. In the Glitch timing mode, the target system is
sampled at every sample period. The data is then stored in memory and
the glitch detectors are checked. If a glitch has been detected between the
previous sample and the current sample, the corresponding glitch bits are
set. The glitch information is then stored. If this is the fIrst stored sample
in memory, then the glitch information stored should be discarded.

System Commands
6-14

HP 16528/16538
Programming Reference

DATA

Machine 1 Machine 2 Pod 5 Pod 4 Pod 3 Pod 2 Pod 1*

177 Status

191 Status

205 Status

219 Status

Status Data Data Data Data Data
StatusAAAAA
Status Data Data Data Data Data
Srarus Glitch Glitch GLitch Glitch Glirch

14485
1 4499

HP 16528/16538
Programming Reference

Status

Status

Status

Status

Data Data Data Data Data
Glitch Glirch Glitch Glitch Glitch

*The headings are not a part of the returned data.

A : Invalid data

Transitional Timing Data Status Bytes. In transitional timing mode, the status bytes indicate
whether a given row in the data contains acquisition information or
transition count information.

bits 10-o birs 8-7 bits 6-5 hirs +3 birs 2-1
Pod 5 Pod 4 Pod 3 Pod 2 Pod 1,

Each pod uses two bits to show what is being represented in the
corresponding Information bytes. Bits 1.0, 8, 6,4 and 2 are set when the
appropiate pod's Information bytes represent acquisition data. When that
bit is clear, the nefi bit shows if the Information bytes represent the first
word of a count. Together there are three possible combinations:

10 - This pod's Information bytes contain acquisition data as obtained from
the target system.

01 - This pod's Information byes contain the first word of a count.
00 - This pod's Information bytes contain part of a count other than the

first word.

System Commands
&15

DATA

Machine 1 Machine 2 Pod 5 Pod 4 Pod 3 Pod 2 Pod 1*
177 Status Status Data Data Data Data Data
191 Status Status ® ® ® ® ®
205 Status Status Data Data Data Data Data
219 Status Status Glitch Glitch Glitch Glitch Glitch

14485
14499

Status
Status

Status
Status

Data
Glitch

Data
Glitch

Data
Glitch

Data
Glitch

Data
Glitch

*The headings are not a part of the returned data.

® = Invalid data

Transitional Timing Data Status Bytes. In transitional timing mode, the status bytes indicate
whether a given row in the data contains acquisition information or
transition count information.

bits 10-9 bits 8-7 bits 6-S bits 4-3 bits 2-1
Pod 5 Pod 4 Pod 3 Pod 2 Pod 1

Each pod uses two bits to show what is being represented in the
corresponding Information bytes. Bits 10, 8, 6, 4 and 2 are set when the
appropiate pod's Information bytes represent acquisition data. When that
bit is clear, the next bit shows if the Information bytes represent the fIrst
word of a count. Together there are three possible combinations:

10 - This pod's Information bytes contain acquisition data as obtained from
the target system.

01 - This pod's Information bytes contain the fIrst word of a count.
00 - This pod's Information bytes contain part of a count other than the

first word.

HP 16528/16538
Programming Reference

System Commands
6-15

DATA

Information Bytes. In the Transitional timing mode the logic analyzer
performs the following steps to obtain the information bytes:

L. Four samples of data are taken at L0 nanosecond intervals. The data is
stored and the value of the last sample is retained.

2. Four more samples of data are taken. If any of these four samples differ
from the last sample of the step 1, then these four samples are stored
and the last value is once again retained.

3. If all four samples of step 2 are the same as the last sample taken in step
L, then no data is stored. Instead, a counter is incremented. This
process will continue until a group of four samples is found which
differs from the retained sample. At this time, the count will be stored
in the memory, the counters reset, the current data stored, and the last
5ample of the four once again retained for comparison.

. ,!.Cl The stored count indicates the number of 40 ns intervals that have elapsed
Note iA between the old data and the new dara.

The rows of the acquisition data D&y, therefore, be either four rows of
data followed by four more rows of data, or four rows of data followed by
four rows of count. Rows of count will always be followed by four rows of
data except for the last row, which may be either data or count.

- tfCl This process is performed on a pod-by-pod basis. The individual status
NOte - bits will indicate what each pod is doing.

System Commands
&16

HP 16s2Bl16s38
Programming Reference

DATA

I

Note '"

I

Note '"

System Commands
6-16

Information Bytes. In the Transitional timing mode the logic analyzer
performs the following steps to obtain the information bytes:

1. Four samples of data are taken at 10 nanosecond intervals. The data is
stored and the value of the last sample is retained.

2. Four more samples of data are taken. If any of these four samples differ
from the last sample of the step 1, then these four samples are stored
and the last value is once again retained.

3. If all four samples of step 2 are the same as the last sample taken in step
1, then no data is stored. Instead, a counter is incremented. This
process will continue until a group of four samples is found which
differs from the retained sample. At this time, the count will be stored
in the memory, the counters reset, the current data stored, and the last
sample of the four once again retained for comparison.

The stored count indicates the number of 40 ns intervals that have elapsed
between the old data and the new data.

The rows of the acquisition data may, therefore, be either four rows of
data followed by four more rows of data, or four rows of data followed by
four rows of count. Rows of count will always be followed by four rows of
data except for the last row, which may be either data or count.

This process is performed on a pod-by-pod basis. The individual status
bits will indicate what each pod is doing.

HP 16528/16538
Programming Reference

DATA

The following table is just an example. The mearing of the Information
bytes (Data or Count) depends upon the corresponding Status bytes.

Machine 1 Machine 2 Pod 5 Pod 4 Pod 3 Pod 2 Pod 1*Example:
177

191

205
219
233
247
261

275
289
303
317
331

345
359
373
387

Status

Status

Status

Status

Status

Status

Status

Status

Status

Status

Status

Status

Status

Status

Status

Status

Status Data Data
Status Data Data
Status Data Data
Status Data Data
Status Data Count
Status Data Count
Status Data Count
Status Data Count
Status Count Data
Status Count Data
Status Count Data
Status Count Data
Status Data Data
Status Data Data
Status Data Data
Status Data Data

Data Data Data
Data Data Data
Data Data Data
Data Data Data
Count Data Data
Count Data Data
Count Data Data
Count Data Data
Data Count Data
Data Count Data
Data Count Data
Data Count Data
Count Data Data
Count Data Data
Count Data Data
Count Data Data

14/i57
14l.71
14485

1 4499

HP 16s28/16538
Programming Reference

Status

Status

Status

Status

Status

Status

Status

Status

Data Data Data Data Data
Data Data Data Data Data
Data Data Data Data Data
Data Data Data Data Data

*The headi.gs are not a part of the returned data.

System Commands
6-17

DATA

The following table is just an example. The meaning of the Information
bytes (Data or Count) depends upon the corresponding Status bytes.

Example: Machine 1 Machine 2 Pod" Pod 4 Pod 3 Pod 2 Pod 1*
177 Status Status Data Data Data Data Data
191 Status Status Data Data Data Data Data
205 Status Status Data Data Data Data Data
219 Status Status Data Data Data Data Data
233 Status Status Data Count Count Data Data
247 Status Status Data Count Count Data Data
261 Status Status Data Count Count Data Data
275 Status Status Data Count Count Data Data
289 Status Status Count Data Data Count Data
303 Status Status Count Data Data Count Data
317 Status Status Count Data Data Count Data
331 Status Status Count Data Data Count Data
345 Status Status Data Data Count Data Data
359 Status Status Data Data Count Data Data
373 Status Status Data Data Count Data Data
387 Status Status Data Data Count Data Data

14457 Status Status Data Data Data Data Data
14471 Status Status Data Data Data Data Data
14485 Status Status Data Data Data Data Data
14499 Status Status Data Data Data Data Data

*The headings are not a part of the returned data.

HP 16528/16538
Programming Reference

System Commands
6-17

DATA

Oscilloscope
Block Data

Oscilloscope
Data Section

System Commands
&18

Section Header The oscilloscope data < section header > used bytes 14523 ths'rgh 14539.

Description The 16 bytes of the section header are as follows:

14523 10 bytes - Section name, "scoPEDer " (two tlailing spaces)

14533 1 byte - Reserved (always 0)

14534 lbyte-Unused

14535 4 bytes - Length ofoscilloscope data

Section Data The oscilloscope raw data < section data > contains the initially acquired
data. Each data u"it is contained in a byte. The lower six bits contain the
data, while the upper rwo bits are not used and as a result, each data unit
can represent a value from 0 to 63. The total number of bytes is this
section is,lO96 with the first 2048 bytes for cha"nel l and the remaining
2048 bytes for channel 2.

The oscilloscope block data is described in the following sections. This
data is appended to the logic analyzer block data and is present only when
the oscilloscope is on and waveform data has been acquired and stored.

The oscilloscope data ssnfains both a section header and section data
similar to the logic analyzer for both of its sections. The oscilloscope block
data sections are Oscilloscope Data and Oscilloscope Display Data.

o Oscilloscope Data - the raw data captured on the last acquisition.

o Oscilloscope Display Data - the segment of data displayed after
each acquisition.

The oscilloscope data and oscilloscope display data sections are sent only
when the oscilloscope is on and there is waveform data stored in the
oscilloscope memory.

The Oscilloscope Data section contains the raw data the oscilloscope
acquired on the last acquisition.

HP 16528/16s38
Programming Reference

DATA

Oscilloscope
Block Data

Oscilloscope
Data Section

Section Header
Description

14523

14533

14534

14535

Section Data

System Commands
6-18

The oscilloscope block data is described in the following sections. This
data is appended to the logic analyzer block data and is present only when
the oscilloscope is on and waveform data has been acquired and stored.

The oscilloscope data contains both a section header and section data
similar to the logic analyzer for both of its sections. The oscilloscope block
data sections are Oscilloscope Data and Oscilloscope Display Data.

• Oscilloscope Data - the raw data captured on the last acquisition.

• Oscilloscope Display Data - the segment of data displayed after
each acquisition.

The oscilloscope data and oscilloscope display data sections are sent only
when the oscilloscope is on and there is waveform data stored in the
oscilloscope memory .

The Oscilloscope Data section contains the raw data the oscilloscope
acquired on the last acquisition.

The oscilloscope data < section header> used bytes 14523 through 14539.
The 16 bytes of the section header are as follows:

10 bytes - Section name, "SCOPEDAT "(two trailing spaces)

1 byte - Reserved (always 0)

1 byte - Unused

4 bytes - Length of oscilloscope data

The oscilloscope raw data < section data> contains the initially acquired
data. Each data unit is contained in a byte. The lower six bits contain the
data, while the upper two bits are not used and as a result, each data unit
can represent a value from 0 to 63. The total number of bytes is this
section is 4096 with the frrst 2048 bytes for channell and the remaining
2048 bytes for channel 2.

HP 16528/16538
Programming Reference

DATA

14539 2048 bytes - raw oscilloscope data for channel 1.

16587 2048 bytes - raw oscilloscope data for chennel 1.

OSCillOSCOpg The display data section < section data > sxlafains the initial data

Display Data displayed after ar acquisition. Each data u"it is represented by a L6 bit

Section ;f,:1ilffiT5;[1"t"0
bv taking the raw oscilloscope data and shifting it

- il$ Changing the seconds-per-division after the oscilloscope has stopped will
NOte t change the data displayed on the screen but it will not change the display

data in this section.

18635 4096 bytes - Displayed oscilloscope data for channel 1,

22731 4096 bytes - Displayed oscilloscope data for channel 2

HP 16528/16s3B
Programming Reference

System Commands
&19

14539

16587

Oscilloscope
Display Data
Section

I
Note II

18635

22731

HP 16528/16538
Programming Reference

DATA

2048 bytes - raw oscilloscope data for channell.

2048 bytes - raw oscilloscope data for channell.

The display data section < section data> contains the initial data
displayed after an acquisition. Each data unit is represented by a 16 bit
value which is generated by taking the raw oscilloscope data and shifting it
the the left by 8 bits.

Changing the seconds-per-division after the oscilloscope has stopped will
change the data displayed on the screen but it will not change the display
data in this section.

4096 bytes - Displayed oscilloscope data for channell

4096 bytes - Displayed oscilloscope data for channel 2

System Commands
6-19

DSP

DSP (Disptay)

System Commands
&20

The DSP co--and writes the specified quoted string to a device

command syntax:
yJ::::"T::-

instrument disprav'

where:

<string > ::= string of up to 60 alphanumeric characters

ExampleS: oUTPUT XXX ; " : SYSTEM : DSP 'The message goes here "'

command

HP 16528116538
Programming Relerence

DSP

DSP (Display) command

The DSP command writes the specified quoted string to a device
dependent portion of the instrument display.

Command Syntax: :SYSTem:DSP <string>

where:

<string>

Examples:

System Commands
6-20

:: = string of up to 60 alphanumeric characters

OUTPUT XXX;":SYSTEM:DSP 'The message goes here'"

HP 16528/16538
Programming Reference

ERRor

ERRor

HP 16528/16538
Programming Reference

query

The ERRor query returns the oldest error number from the error queue.
A complete list of error numbers for the HP L652B153B is shown in
appendix C, nError Messages." If no errors are present in the error queue,
a zero is returned.

Query Syntax: :SYSTem:ERRor?

RetUrned Format: [:SYSTem:ERRo4 <6110r number> < NL>

Example: t0 oUTPUT XXX; ":SYSTEM:ERROR?"

20 ENTER XXX; Err_num

30 PRINT Err num

40 END

System Commands
F21

ERRor

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

ERRor

query

The ERRor query returns the oldest error number from the error queue.
A complete list of error numbers for the HP 1652B/53B is shown in
appendix C, "Error Messages." If no errors are present in the error queue,
a zero is returned.

:SYSTem:ERRor?

[:SYSTem:ERRor] <error number> < NL>

10 OUTPUT XXX;":SYSTEM:ERROR?"
20 ENTER XXX;Err_num
30 PRINT Err_num
40 END

System Commands
6-21

HEADeT

HEADeT command/guery

The HEADER command tells the instnment whether or not to output a

header for query respotrses. When HEADeT is set to ON, query
responses will include the command header.

The HEADeT query returns the current state of the HEADeT command.

command syntax: :sYSTem:HEADer {{oNllil{oFFloi}

Example: 0UTPUT XXX ; " : SYSTEM : HEADER 0N"

Query Commandt :SYSTem:HEADer?

Returned Format: [:SYSTem:HEADer] {1 l0} < NL>

Example: to DIM Mcde$[1oo]

20 0UTPUT XXX; ": SYSTEM: HEADER?"

30 ENTER XXX;Mode$

40 PRINT Mode$

50 END

Nore {$
Headers should be turned off when returning values to numeric variables.

HP 16528/16538
Programming Reference

System Commands
e.22

HEADer

HEADer

Command Syntax:

Example:

Query Command:

Returned Format:

Example:

II!!I
Note III

System Commands
6-22

command/query

The HEADER command tells the instrument whether or not to output a
header for query responses. When HEADer is set to ON, query
responses will include the command header.

The HEADer query returns the current state of the HEADer command.

:SYSTem:HEADer {{ON 11} I{OFFIO}}

OUTPUT XXX;":SYSTEM:HEADER ON"

:SYSTem:HEADer?

[:SYSTem:HEADer] {110}<NL>

10 DIM Mode$[lOO]
20 OUTPUT XXX;":SYSTEM:HEADER?"
30 ENTER XXX;Mode$
40 PRINT Mode$
50 END

Headers should be turned off when returning values to numeric variables.

HP 16528/16538
Programming Reference

KEY

Note ttf,

command/query

The KEY command allows you to simulate pressing a specified
front-panel key. Key commands may be sent over the bus io aoy order
that is legal fronn the front panel. Be sure the instrument is in a desired
setup before executing the KEY command. Key codes range from 0 to 36
with 99 representing no key (returned at power-up). See table 6-L for key
codes.

The external KEY buffer is only two keys deep; therefore, attempting to
send KEY commands too rapidly wi[cause a I(EY buffer overflow error
to be displayed on the HP L652B153B screen.

System Commands
&23

The KEY query returns the key code for the last front- panel key pressed
or the last simulated key press over the bus.

Command Syntax: :SYSTem:KEy <key_code>

where:

< key_code > :: = integer from 0 to 36

Example: 0UTPUT XXX; ": SySTEM: KEy 24"

HP 16528/16538
Programming Reference

KEY

I

Note ""

KEY

command/query

The KEY command allows you to simulate pressing a specified
front-panel key. Key commands may be sent over the bus in any order
that is legal from the front panel. Be sure the instrument is in a desired
setup before executing the KEY command. Key codes range from 0 to 36
with 99 representing no key (returned at power-up). See table 6-1 for key
codes.

The external KEY buffer is only two keys deep; therefore, attempting to
send KEY commands too rapidly will cause a KEY buffer overflow error
to be displayed on the HP 1652B/53B screen.

The KEY query returns the key code for the last front- panel key pressed
or the last simulated key press over the bus.

Command Syntax: :SYSTem:KEY <key_code>

where:

< key_code>

Example:

HP 16528/16538
Programming Reference

:: = integer from 0 to 36

OUTPUT XXX;":SYSTEM:KEY 24"

System Commands
6-23

KEY

Query Syntax! :SYSTem:KEY?

Returned Format: [:SYSTem:KEY] < key_code > < NL>

Example: 10 DrM Key$ tlool
20 0UTPUT XXX; " : SYSTEM: KEY?"

30 ENTER XXX; KEY$

40 PRINT KEY$

50 END

Table S1. Key codes

Key Value HP 16528/538
Key

Key Value HP165aB1S3B

Key

0
1

2

3

4

5

6
7

8

9
10

11

L2

L3

L4

15

16

L7

18

RUN
STOP
unused
SELECT
CHS
Don't Care
0
1

2

3
4
5

6

7

8

9
A
B
C

L9

?T

2L

22

23

24

25

?5

27

?a

29

30

3L

32

33

v
35
%
99

D
E
F
unused
unused
Knob left
Knob rigbt
L/R Roll
U/D Roll
unused
unused
unused
lt.fl

Clear Entry
FORMAT/CHAN
TRACE/TRIG
DISPLAY
vo
Power Up

System Commands
&.24

HP 16528.116538
Programming Reference

KEY

Query Syntax: :SYSTem:KEY?

Returned Format: [:SYSTem:KEY] <key_code> <NL>

Example: 10 DIM Key$ [1 OOJ
20 OUTPUT XXX;":SYSTEM:KEY?"
30 ENTER XXX; KEY$
40 PRINT KEY$
50 END

Table 6-1. Key codes

Key Value UP 1652B/53B Key Value HP1652B/53B
Key Key

0 RUN 19 D
1 STOP 20 E
2 unused 21 F
3 SELECT 22 unused
4 CHS 23 unused
5 Don't Care 24 Knob left
6 0 25 Knob right
7 1 26 LIR Roll
8 2 27 UID Roll
9 3 28 unused
10 4 29 unused
11 5 30 unused
12 6 31 " "
13 7 32 Clear Entry
14 8 33 FORMAT/CHAN
15 9 34 TRACErrRIG
16 A 35 DISPLAY
17 B 36 I/O
18 C 99 Power Up

System Commands
6-24

HP 16528/16538
Programming Reference

LER

-

LER (LCL Event Register) query

The LER query allows the LCL (local) Event Register to be read. After
the LCL Event Register is read, it is cleared. A one indicates a
remote-tolocal transition has taken place. A zero indicates a
remote-to-local transition has not taken place.

QuerySyntax: :sYSTem:LER?

Returned Format: [:SYSTem:LER] {ol1}<NL>

Example: 10 DIM Eventg[100]

20 0UTPUT XXX; ": SYSTTt'l: LER?"

30 ENTER XXX;Event$

40 PRINT Event$

50 TND

HP 16528/16538
Programming Reference

System Commands
F25

LER (LCL Event Register)

LER

query

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

The LER query allows the LCL (local) Event Register to be read. After
the LCL Event Register is read, it is cleared. A one indicates a
remote-to-Iocal transition has taken place. A zero indicates a
remote-to-Iocal transition has not taken place.

:SYSTem:LER?

[:SYSTem:LER] {OI1}<NL>

10 DIM Event$[lOO]
20 OUTPUT XXX;":SYSTEM:LER?"
30 ENTER XXX;Event$
40 PRINT Event$
50 END

System Commands
6-25

LOCKout

LOCKout

System Commands
&26

command/guery

The LOCKout command locks out or restores front-panel operation.
When this function is on, all controls (except the power switch) are
entirely locked out.

The LOCKout query returns the current status of the LOCKout command.

Command Syntax: :SYSTem:LOGKout {{ONl1}l{OFFlo}}

Example: OUTPUT xxx;":sYSTElr:L0cKOuT 0N"

Query Syntax: :SYSTem:LoCKour?

Returned Format: [:SYSTem:LOCKout] {011}<NL>

Example: 1o DItl statusg[1oo]
20 0UTPUT XXX; ": SYSTEM: L0CKOUT?"

30 ENTER XXX;Status$

40 PRINT Status$

50 TND

HP 16528/16538
Programming Relerence

LOCKout

LOCKout

Command Syntax:

Example:

Query Syntax:

Returned Format:

Example:

System Commands
6-26

command/query

The LOCKout command locks out or restores front-panel operation.
When this function is on, all controls (except the power switch) are
entirely locked out.

The LOCKout query returns the current status of the LOCKout command.

:SYSTem:LOCKout {{ON 11 }I{OFF IO} }

OUTPUT XXX;":SYSTEM:LOCKOUT ON"

:SYSTem:LOCKout?

[:SYSTem:LOCKout] {O 11} < NL>

10 DIM Status$[100]
20 OUTPUT XXX;":SYSTEM:LOCKOUT?"
30 ENTER XXX;Status$
40 PRINT Status$
50 END

HP 16528/16538
Programming Reference

LONGform

LONGform command/query

The LONGform command sets the longforn variable which tells the
instrment how to format query responses. If the LONGform command
is set to OFIF, command headers and alpha arguments are sent from the
instrument in the abbreviated form. If the LONGform command is set to
ON, the whole word will be sent to the controller.

This command has no affect on the input data messages to the instrunent.
Headers and arguments may be input in either the longform or shortform
regardless of how the LONGform command is set.

The query returns the status of the LONGform command.

Command Syntax: :SySTem:LONGform {{ONllil{OFFlo}}

Example: OuTpuT xXX ; " : sysTEM : L0NGF0RM 0N"

Query Syntax! :SYSTem:LONGform?

Returned Format: [:SYSTem:LONGform] {1 l0} < NL>

Example: 10 D I M Mode$ tl ool

20 OUTPUT XXX; ": SYSTIM: L0NGF0RM?"

30 ENTER XXX;Mode$

40 PRINT Mode$

50 END

HP 16528/16538
Programming Relerence

System Commands
&27

LONGform

Command Syntax:

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

LONGform

command/query

The LONGform command sets the longform variable which tells the
instrument how to format query responses. If the LONGform command
is set to OFF, command headers and alpha arguments are sent from the
instrument in the abbreviated form. If the LONGform command is set to
ON, the whole word will be sent to the controller.

This command has no affect on the input data messages to the instrument.
Headers and arguments may be input in either the longform or shortform
regardless of how the LONGform command is set.

The query returns the status of the LONGform command.

:SYSTem:LONGform {{ON 11} I{OFFIO}}

OUTPUT XXX;":SYSTEM:LONGFORM ON"

:SYSTem:LONGform?

[:SYSTem:LONGform] {110} < NL>

10 DIM Mode$[100]
20 OUTPUT XXX;":SYSTEM:LONGFORM?"
30 ENTER XXX;Mode$
40 PRINT Mode$
50 END

System Commands
6-27

MENU

MENU command/query

The MENU command puts a menu on the display.

The MENU query returns the current menu selection.

:SYSTem:MENU < menu type), (mach num >

" = {SCONfig I FORMat I CHANnel ITRACe lTRlGger I DlSPlay lWAVeform ISWAVeform I

COMPare I SCHart I SLISI)

ii: {0 | 1 l2 l3}
ri: rTlixed mode

ir = thdlyzer 1

ii = 803lyzer 2

:: = oscilloscope

Command Syntax:

where:

< menu_type >

< mach_num >

0

1

2

3

Example: ouTpuT XXX; "sysTEM:MENU F0RMAT, 1"

Query Syntaxr :SYSTem:MENU?

Returned Format: [:SYSTem:MENU] < menu_type), (mach num >

Example: 10 DIM Responseg [100]
2A OUTPUT XXX; ": SYSTEM:MENU?"

30 ENTER XXX;Response$

40 PRINT Response$

50 END

System Gommands
&28

HP 16s28/16538
Programming Relerence

MENU

MENU command/query

The MENU command puts a menu on the display.

The MENU query returns the current menu selection.

Command Syntax: :SYSTem:MENU <menu_type>,<mach_num>

where:

<mach_num>

o
1

2

3

Example:

Query Syntax:

Returned Format:

Example:

System Commands
6-28

:: = {SCONfig IFORMat ICHANnell TRACe ITRIGger IDISPlay IWAVeform ISWAVeform I
COMPare ISCHart ISUSt}

:: = {O I 1 I 2 I 3}

:: = mixed mode

:: = analyzer 1

:: = analyzer 2

:: = oscilloscope

OUTPUT XXX;"SYSTEM:MENU FORMAT,l"

:SYSTem:MENU?

[:SYSTem:MENU] < menu_type> I < mach_num >

10 DIM Response$[lOO]
20 OUTPUT XXX;":SYSTEM:MENU?"
30 ENTER XXX;Response$
40 PRINT Response$
50 END

HP 16528/16538
Programming Reference

MESE

MESE

HP 16528/16538
Programming Reference

command/query

The MESE command sets the Module Event Status Enable Register bits.
The MESE register 6ssfains a mask value for the bits enabled ia the
MESR register. A one in the MESE will enable the correspoading bit in
the MESR. a zero will disable the bit.

The MESE query returns the current setting.

Refer to table6-2 for information about the Module Event Status Enable
register bits, bit weights, and what each bit masks for the logic analyzer.

Command Syntax: :SYSTem:MESE <enable_mask>

where:

< enable mask > :: : integer from 0 to 255

Example: oUTPUT XXX;":SYSTEM:MESE 1"

System Commands
s29

MESE

MESE

command/query

The MESE command sets the Module Event Status Enable Register bits.
The MESE register contains a mask value for the bits enabled in the
MESR register. A one in the MESE will enable the corresponding bit in
the MESR, a zero will disable the bit.

The MESE query returns the current setting.

Refer to table 6-2 for information about the Module Event Status Enable
register bits, bit weights, and what each bit masks for the logic analyzer.

Command Syntax: :SYSTem:MESE <enable mask>

where:

< enable mask>

Example:

HP 16528/16538
Programming Reference

:: = integer from 0 to 255

OUTPUT XXX;":SYSTEM:MESE 1"

System Commands
6-29

MESE

Query Syntax: :SYSTem:MESE?

Returned Format: [:SYSTem:MESE] <enabte_mask > < NL>

Example: 10 ouTpuT XXX; " : sySTEM : i'|ESE?"

?0 TNTER XXX; Mes

30 PRINT Mes

40 END

Table &.2. Module Event Status Enable Register

Module Event Status Enable Register
(A ul" enables the MESR bit)

Bit Weight Enables

7

6

5
4
3
2

1

0

L28

&
32
L6

8
4
aL

1

Not used
Not used
Not used
Not used
Not used
Not used
RNT - Run until satisified
MC - Measurement complete

System Commands
&30

HP 1652B../16s38
Programming Reference

MESE

Query Syntax: :SYSTem:MESE?

Returned Format: [:SYSTem:MESE] <enable_mask> <NL>

Example: 10 OUTPUT XXX;": SYSTEM: MESE?"

20 ENTER XXX; Mes

30 PRINT Mes

40 END

Table 6-2. Module Event Status Enable Register

Module Event Status Enable Register
(A "1" enables the MESR bit)

Bit Weight I Enables

7 128 Not used
6 64 Not used
5 32 Not used
4 16 Not used
3 8 Not used
2 4 Not used
1 '" RNT - Run until satisified~

0 1 Me - Measurement complete
I

System Commands
6-30

HP 16528/16538
Programming Reference

MESR

MESR query

The MESR query returns the contents of the Module Event Status
register.

Reading the register clears the Module Event Status Register.

Table 6-3 shows each bit in Module Event Status Register and their bit
weights for the logic analper. When you read the MESR, the value
returned is the total bit weishts of all bits that are set at the time the
register is read.

QuerySyntax: :SYSTem:MESR?

Returned Format: [:SYSTem:MESR] <starus><NL>

where:

< status > :: = integer from 0 to 255

Example: 10 0UTPUT XXX;" :SySTem:MESR?"

20 ENTTR XXX; t'|er

30 PRINT Mer

40 END

Note {f,

HP 1652B.,/16s38
Programming Relerence

System Commands
&31

MESR

I~INote ,.

MESR

query

The MESR query returns the contents of the Module Event Status
register.

Reading the register clears the Module Event Status Register.

Table 6-3 shows each bit in Module Event Status Register and their bit
weights for the logic analyzer. When you read the MESR, the value
returned is the total bit weights of all bits that are set at the time the
register is read.

Query Syntax: :SYSTem:MESR?

Returned Format: [:SYSTem:MESR] <status> <NL>

where:

<status>

Example:

HP 16528/16538
Programming Reference

:: = integer from 0 to 255

10 OUTPUT XXX;":SYSTem:MESR?"
20 ENTER XXX; Mer
30 PRINT Mer
40 END

System Commands
6-31

MESR

Table &3. Module Event Status Register

Module Event Status Register

Bit Weight Condition

7

6

5

4
3

2

1

0

L28
64

32
T6

8
4
2

L

Not used
Not used
Not used
Not used
Not used
Not used
1 _ Run until satisified
0 - Run until not satisified
1 : Measurement complete
0 : Measurement not completr

System Commands
e.32

HP 16528/16538
Programming Relerence

MESR

System Commands
6-32

Table 6-3. Module Event Status Register

Module Event Status Register

Bit Weight Condition

7 128 Not used
6 64 Not used
5 32 Not used
4 16 Not used
3 8 Not used
2 4 Not used
1 2 1 = Run until satisified

o = Run until not satisified
0 1 1 = Measurement complete

o = Measurement not completl

HP 16528/16538
Programming Reference

PPOWeT

PPOWeT

HP 16s2Bl16538
Programming Reference

query

The PPOWeT (preprocessor power) query returns the current status of
the HP 1652B/53B's high-current limil gfusui1. If it is functioning properly,
f. is returned. If the current draw is 1ss high, 0 is returned until the
problem is corrected and the circuit automatically resets.

Query Syntax: :PPower?

Returned Format: t:PPowerl {o | 1}

Example: 10 DIt'l Response$ [10]
20 0UTPUT XXX;":PP0bJER?"

30 ENTER XXX; Response$

40 PRINT Response$

50 TND

System Commands
s33

PPOWer

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

PPOWer

query

The PPOWer (preprocessor power) query returns the current status of
the HP 1652B/53B's high-current limit circuit. If it is functioning properly,
1 is returned. If the current draw is too high, 0 is returned until the
problem is corrected and the circuit automatically resets.

:PPOWer?

[:PPOWer] {O I 1}

10 DIM Response$[lO]
20 OUTPUT XXX;":PPOWER?"
30 ENTER XXX; Response$
40 PRINT Response$
50 END

System Commands
6-33

PRINT

PRINT

System Commands
s34

command

The PRINT command initiates a print of the screen or print all over the
RS-232C bus. The PRINT pararneters SCReen or ALL specify how the
screen data is sent to the controller. PRINT SCReen transfers the data to
the controller in a printer specific graphics format. PRINT ALL transfers
the data in a raster format for the following menus:

o State and Timing Format menus

o Disk menu

o State and Timing Symbol menus

o State Listing menu

o State Trace

o State Compare

COmmand Syntaxr :SYSTem:PRtt',lt {SCReen IALL}

Example: oUTPUT XXX; " : SySTEM: pR I NT sCREIN"

HP 16s2B/16s38
Programming Reference

PRINt

PRINt

Command Syntax:

Example:

System Commands
6-34

command

The PRINt command initiates a print of the screen or print allover the
RS-232C bus. The PRINt parameters SCReen or ALL specify how the
screen data is sent to the controller. PRINt SCReen transfers the data to
the controller in a printer specific graphics format. PRINt ALL transfers
the data in a raster format for the following menus:

• State and Timing Format menus

• Diskmenu

• State and Timing Symbol menus

• State Listing menu

• State Trace

• State Compare

:SYSTem:PRINt {SCReen IALL}

OUTPUT XXX;":SYSTEM:PRINT SCREEN"

HP 16528/16538
Programming Reference

RMODe

RMODe command/Query

The RMODe @mmand is a run control command that specifies the run
mode for logi c analyzer and oscillosmpe. It is at the same level in the
command tree as SYSTem; therefore, it is not preceded by :SYSTem.

The query returns the current setting.

,fl After speci$ing the run mode, use the START command to start the
NOte t acquisition.

Command Syntaxr :RMoDe {stNGte lREPetitive}

Example: oUTPUT XXX;":RM0DE SINGLE"

Query Syntax :RMoDe?

Returned Format: [:RMODe] {SlNGle lREPetitive} < NL>

Example: 10 DIM Mode$ [1oo]
20 OUTPUT XXX; " : RMCDE?"

30 ENTER XXX; Mode$

40 PRINT Mode$

50 IND

HP 16528/16s38
Programming Reference

System Commands
&35

RMODe

, _I
Note U

Command Syntax:

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

RMODe

command/query

The RMODe command is a run control command that specifies the run
mode for logic analyzer and oscilloscope. It is at the same level in the
command tree as SYSTem; therefore, it is not preceded by :SYSTem.

The query returns the current setting.

After specifying the run mode, use the STARt command to start the
acquisition.

:RMODe {SINGle IREPetitive}

OUTPUT XXX;":RMODE SINGLE"

:RMODe?

[:RMODe] {SINGle IREPetitive} < NL>

10 DIM Mode$[lOO]
20 OUTPUT XXX;":RMODE?"
30 ENTER XXX;Mode$
40 PRINT Mode$
50 END

System Commands
6-35

SETUp

SETUp

System Commands
&36

command/guery

The SYStem:SETup command configures the logic analyzer module as

defined by the block data sent by the controller.

The SYStem:SETup query returns a block of data that contains the
current configuration to the controller.

There are three data sections which are always returned and a fourth
header when the oscilloscope is on and has acquired and stored waveform
data. These are the strings which would be included in the section header:

o "C0NFIG ''

o "1650 RS232"

o "1650 DISP ''

o "1650 DISPz"

o "sc0PEcNF ''

Additionally, the following sections may also be included, depending on
what's loaded:

o "SYi'{BOLS A ''
O "SYMBOLS B II

O ''SPA DATA

O ''SPA DATA

o "INVASI{A ''

o "INVASilB "
o "C0MPARE ''

HP 16s2B/16s38
Programming Reference

A"

B"

SETup

SETup

System Commands
6-36

command/query

The SYStem:SETup command configures the logic analyzer module as
defined by the block data sent by the controller.

The SYStem:SETup query returns a block of data that contains the
current configuration to the controller.

There are three data sections which are always returned and a fourth
header when the oscilloscope is on and has acquired and stored waveform
data. These are the strings which would be included in the section header:

• "CONFIG

• "1650 RS232"

• "1650 DISP "

• "1650 DISP2"

• "SCOPECNF "

Additionally, the following sections may also be included, depending on
what's loaded:

• "SYMBOLS A "

• "SYMBOLS B "

• "SPA DATA A"

• "SPA DATA B"

• "INVASM A "

• "INVASM B "

• "COMPARE

HP 16528/16538
Programming Reference

SETUp

Command syntarl :SYStem:SETup < btock data >

where:

< block data > :: = < block length specifier > < section > ...

< block length specifier > :: = #8 < length >
< length > :: = ihe total length of all sections in byte format (must be represented with 8 digits)

<section> ::= <section header> <section data>
<section header> :: = 16 bytes in the lollowing format:

10 bytes for the section namo

1 byte reserved

1 byte tor the module lD code (31 tor the logic analyzer)

4 bytes for the length of the section data in bytes

<section data> ::= tormatdependsonthetypeotdata

of the section data. So when calculating the value for < length) , don't
forget to include the length of the section headers.

Example: oUTPUT xxx usll{G "#,K";":SYSTEil:SETUP " <block dara>

QuerySyntax: :SYStem:SETup?

Returned Format: [:SYStem:SETup] <block data> <NL>

HPJB Example: 10 DItl Elock$[32000] lallocate enough mcmory for block data

20 DIl,l Specifier$[2]
30 OUTPUT XXX;":SYSTEH:HEAD OFF"

40 0UTPUT XXX;":SYSTEIi{:SETUP?" ! send setup querv

50 EI{TER XXX USING "#,2A";Specifier$! read in #8

60 ENTER XXX USING "#,80";Blocklength! read in block length
70 Ei{TER XXX USING "-K";Block$! read in data

80 END

-..1
NOtg 19 The total length of a section is 16 (for the section header) plus the length

HP 16528/16s38
Programming Reference

System Commands
s37

SETup

Command syntax: :SYStem:SETup <block data>

where:

< block data >

< block length specifier>

<length>

<section>

< section header>

< section data>

I~I
Note U

:: = < block length specifier> < section> 000

::= #8<length>

:: = the total length of all sections in byte format (must be represented with 8 digits)

:: = < section header> < section data >

:: = 16 bytes in the following format:

10 bytes for the section name

1 byte reserved

1 byte for the module 10 code (31 for the logic analyzer)

4 bytes for the length of the section data in bytes

:: = format depends on the type of data

The total length of a section is 16 (for the section header) plus the length
of the section data. So when calculating the value for < length> , don't
forget to include the length of the section headers.

Example: OUTPUT XXX US ING "#, K";": SYSTEM: SETUP .. < block data>

Query Syntax:

Returned Format:

HP-IB Example:

HP 16528/16538
Programming Reference

:SYStem:SETup?

[:SYStem:SETup] < block data> < NL>

10 DIM Block$[32000] !alloeate enough memory for block data
20 DIM Specifier$[2]
30 OUTPUT XXX;":SYSTEM:HEAD OFF"
40 OUTPUT XXX;": SYSTEM: S£TUP?" ! send setup query
50 ENTER XXX USING "#,2A";Specifier$! read in #8
60 ENTER XXX USING "#,8D";Blocklength! read in bloek length
70 ENTER XXX USING "-K";Bloek$! read in data
80 END

System Commands
6-37

START

START command

The START command is a run control command that starts the logic
analyer running in the specified run mode (see RMODe). The START
command is on the same level in the command tree as SYSTem; therefore,
it is not preceded by :SYSTem.

I
flli The START command is an Overlapped Command. An Overlapped

NOte tl Command is a command that allows execution of subsequent commands
while the device operations initiated by the Overlapped Command are still
in progress.

Command Syntaxt :sTARr

Example: oUTPUT XXX; " : START"

System Commands
F38

HP 16s28/16538
Programming Relerence

STARt

STARt

I~I
Note W

Command Syntax:

Example:

System Commands
6-38

command

The STARt command is a run control command that starts the logic
analyzer running in the specified run mode (see RMODe). The STARt
command is on the same level in the command tree as SYSTem; therefore,
it is not preceded by :SYSTem.

The STARt command is an Overlapped Command. An Overlapped
Command is a command that allows execution of subsequent commands
while the device operations initiated by the Overlapped Command are still
in progress.

:STARt

OUTPUT XXX;":START"

HP 16528/16538
Programming Reference

STOP

STOP

Note

HP 16s28/16538
Programming Relerence

Command Syntax :sToP

command

The STOP command is a run control command that stops the logic

analyznr. The STOP command is on the same level in the command tree

as SYSTem; therefore, it is not preceded by :SYSTem.

The STOP command is an Overlapped Command. An Overlapped

Comrnand is a command that allows execution of subsequent commands

while the device operations initiated by the Overlapped Command are still
in progress.

Example: OUTPUT)oC(':STOP'

System Commands
s39

STOP

I~I
Note lIP

Command Syntax:

Example:

HP 16528/16538
Programming Reference

STOP

command

The STOP command is a run control command that stops the logic
analyzer. The STOP command is on the same level in the command tree
as SYSTem; therefore, it is not preceded by :SYSTem.

The STOP command is an Overlapped Command. An Overlapped
Command is a command that allows execution of subsequent commands
while the device operations initiated by the Overlapped Command are still
in progress.

:STOP

OUTPUT XXX;M:STOP"

System Commands
6-39

r

r

r

MMEMoT Subsystem

lntroduction

Note

HP 1652B./16s38
Programming Reference

MMEMoT subsystem commands provide access to the disk drive. The
MMEMoT subsystem commands are:

. AUToload
o CATalog
O COPY
. DOWNload
o INITializ€
o LOAD
o PACK
o PURGe
. REName
. STORe
. UPLoad

If you are not golng.to store information to the configuration disk, or if the
disk you are using contains information you need, it is advisable to write
protect your disk. This will protect the contents of the disk from
accidental damage due to incorrect commands, etc.

MMEMoT Subsystem
7-1

MMEMory SUbsystem 7
Introduction

HP 16528/16538
Programming Reference

MMEMory subsystem commands provide access to the disk drive. The
MMEMory subsystem commands are:

• AUToload
• CATalog
• COpy
• DOWNload
• INITialize
• LOAD
• PACK
• PURGe
• REName
• STORe
• UPLoad

If you are not going,to store information to the configuration disk, or if the
disk you are using contains information you need, it is advisable to write
protect your disk. This will protect the contents of the disk from
accidental damage due to incorrect commands, etc.

MMEMory SUbsystem
7-1

: MMEMo r y AUTo I ood spoce oFF I o

outo-f ile

AUTo I ood?

CATc ! og?

spoce

b I ock-do to

spoce

s poceIASSemb I e r

spoce

spoceRE N ome n e w_n ome

spoce

spoce

CONF i g

description

UPLood?

Oescrtptron

Figure 7-L MMEMory Subsystem Commands Syntax Diagram

MMEMoT Subsystem
7-2

HP 16528'116538
Programming Reference

INIT j a I i ze 1---------------------------...

LOAD 1-r---------------.,...-----4~

PACK ..-----------------------------~

STORe t--r-----------r-I~

description

01650502

Figure 7-1. MMEMory Subsystem Commands Syntax Diagram

MMEMory Subsystem
7-2

HP 16528/16538
Programming Reference

auto-file : stingof up to 10 alphanumeric chancten representinga validfile narne.
nqme : stringof up to 10 alphonumeic characten rcpresentingavalidfile name.
description = suing of up to 32 alphanumeic characten.
ttpe = integer, refer to table 7-1.

block_data : futoin IEEE 488"2 # Iormat.
ia_nane : suing of up to 10 alphanumeic charucten representing a valid file name.
nsw_name : string of up to 10 alphanumeic chuacten representing a valid file name

Figure 7-1. MMEMoT Subsystem Commands Syntax Diagram (continued)

. ilA Refer to "Disk Operations" in chapter 5 of theIIP 1652fl1538 Logic
NOI9 - Analyzzn Reference manual for a description of a valid file na'ne.

HP 16528/16538
Programming Relerence

MMEMoT Subsystem
7-3

auto_rIle = string ofup to 10 alphanumeric characters representing a valid file name.
name = string ofup to 10 alphanumeric characters representing a valid file name.
description = string ofup to 32 alphanumeric characters.
type = integer, refer to table 7-1.
block_data = data in IEEE 488.2 # fonnat.
ia_name = string ofup to 10 alphanumeric characters representing a valid file name.
new_name = string ofup to 10 alphanumeric characters representing a valid file name

Figure 7-1. MMEMory Subsystem Commands Syntax Diagram (continued)

I
Note"

HP 16528/16538
Programming Reference

Refer to "Disk Operations" in chapter 5 of the HP 1652B/53B Logic
Analyzers Reference manual for a description of a valid ftIe name.

MMEMory Subsystem
7-3

AUToload

AUToload command/guery

The AUToload command controls the autoload feature which desigpates
a configuration frle to be loaded automatically the nerC time the
instrument is turned on. The OFF parameter (or 0) disables the autoload
feature. When a string parameter is specified it represents the desired
autoload file.

The AUToload query returns 0 if the autoload feature is disabled. If the
autoload feature is enabled the query returns a string palameter that
specifies the current autoload file.

COmmand Syntax: :MMEMory:AUTotoad {{OFFlo} | <auro_fit€ > }

where:

<auto_file> :: = string of up to 10 alphanumeric charac-ters

Examples: 0uTpuT xXX ; " : tqilEuoRy : AUToL0AD oFF"

OUTPUT XXX; " :i,|MEMORY :AUTOLOAD'FILEl "'
OUTPUT XXX; " :l,lMEl'lORY :AUT0L0AD'FILEz "'

Query Command! :MMEMory:AUTotoad?

Returned Format: [:MMEMory:AUTotoadJ {O | <auto_fite > }. NL>

Example: 10 DIU Auto_status$ tl00l
20 0UTPUT XXX; " : i'll.lEM0RY: AUTOLOAD?"

30 ENTER XXX;Auto_status$
40 PRINT Auto status$
50 END

MMEMoT Subsystem
7-4

HP 16s28/16538
Programming Reference

AUToload

AUToload command/query

The AUToload command controls the autoload feature which designates
a configuration rtIe to be loaded automatically the next time the
instrument is turned on. The OFF parameter (or 0) disables the autoload
feature. When a string parameter is specified it represents the desired
autoload file.

The AUToload query returns 0 if the autoload feature is disabled. If the
autoload feature is enabled, the query returns a string parameter that
specifies the current autoload rtIe.

Command Syntax: :MMEMory:AUToload {{OFFIO}I<auto_file>}

where:

Examples:

Query Command:

Returned Format:

Example:

MMEMory Subsystem
7-4

:: = string of up to 10 alphanumeric characters

OUTPUT XXX;":MMEMORY:AUTOLOAD OFF"
OUTPUT XXX;": MMEMORY :AUTOLOAD 'FILE1 '"
OUTPUT XXX;":MMEMORY:AUTOLOAD 'FILE2'"

:MMEMory:AUToload?

[:MMEMory:AUToload] {Ol <auto_file> }<NL>

10 DIM Auto_status$[100]
20 OUTPUT XXX;":MMEMORY:AUTOLOAD?"
30 ENTER XXX;Auto_status$
40 PRINT Auto_status$
50 END

HP 16528/16538
Programming Reference

CATalog

CATalog

where:

< block size >

< block data >

Example:

HP 1652B./16s38
Programming Relerence

#Sdddddddd (#8 followed by an eightdigit number)

[<filename > <file type > <file description > J...

10 DIM File$[s1]
20 DIM Specifier$[2]
30 OUTPUT XXX; " : SYSTET'I: HEAD OFF"

40 OUTPUT XXX; " : l'll'lEl,l0RY : CATAL0G?"

50 ENTER XXX USIi{G "#,2A";Specifier$
60 ENTER XXX US I NG "# ,80" ; Length
70 FOR I=1 T0 Length STEP 51

80 ENTER XXX US I NG "# , 51A" ; F i le$
90 PRINT File$
lOO NEXT I

110 ENTER XXX USING "A";Specifier$
L?O END

! send cata 1og guery

! read in #8

!read in length
! read and pr i nt each f i le

!read in final line feed

query

The CATalog query returns the directory of the disk in block data format.
The directory consists of a 5L-character string for each file on the disk.
Each file entry is formatted as follows: *

"NNNNNNNNNN TTTTTTT DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"

where N is the filen?ms, T is the file tlpe (a number), and D is the file
description.

Query Syntax! :MMEMory:CATatog?

Returned Format: [:MMEMory:CATalogJ < block size > < block data >

MMEMoT Subsystem
7-5

CATalog

CATalog

query

The CATalog query returns the directory of the disk in block data format.
The directory consists of a 51-character string for each file on the disk.
Each fue entry is formatted as follows:

"NNNNNNNNNN I I I I I I I DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"

where N is the fuename, T is the fue type (a number), and D is the file
description.

Query Syntax: :MMEMory:CATalog?

Returned Format: [:MMEMory:CATalog] <block size> <block data>

where:

< block size>

< block data>

:: = #8dddddc;ldd (#8 followed by an eight-digit number)

:: = [<filename> <file type> <file description>]...

Example: 10 DIM Fi le$ [51]
20 DIM Specifier$[2]
30 OUTPUT XXX;":SYSTEM:HEAD OFF"
40 OUTPUT XXX;":MMEMORY:CATALOG?"
50 ENTER XXX USING "#,2A";Specifier$
60 ENTER XXX USING "#,8D";Length
70 FOR 1=1 TO Length STEP 51
80 ENTER XXX USING "#,51A";File$
90 PRINT File$
100 NEXT I
110 ENTER XXX USING "A";Specifier$
120 END

HP 16528/16538
Programming Reference

!send catalog query
!read in #8
!read in length
!read and print each file

!read in final line feed

MMEMory Subsystem
7-5

COPY

COPY

MMEMoT Subsystem
7-6

The COPY command copies the contents of a file to a new file. The nro
< neme > parameters are the filenames. The first parameter specifies the
source file. The second specifies the destination file. An error is
generated if the source file doesn't exist, if the destination file already
exists, or any other disc error is detected.

Gommand Syntax: :MMEMory:COPY <name>,<name>

where:

< name > :: = string of up to 10 alphanumeric characlers representing a valid file name

Example: To copy the contents of 'FILEI" to nFlLE2":

command

HP 16s28/16538
Programming Reference

COpy

COpy command

The COpy command copies the contents of a file to a new rde. The two
< name> parameters are the ftlenames. The fust parameter specifies the
source fde. The second specifies the destination file. An error is
generated if the source rde doesn't exist, if the destination fde already
exists, or any other disc error is detected.

Command Syntax: :MMEMory:COPv <name>,<name>

where:

< name> :: = string of up to 10 alphanumeric characters representing a valid file name

Example: To copy the contents of "FILEI" to "FILE2":

OUTPUT XXX;":MMEMORY:COPY 'FILEl', 'FILE2'"

MMEMory Subsystem
7-6

HP 16528/16538
Programming Reference

DOWNload

DOWNload

The DOWNload command domloads a file to the disk. The < nnme >
parameter specifies the filename, the <description> para-eter specifies
the file description, and the <block_data) contains the contents of the
file to be downloaded.

Table 7-l lists the file tlpes for the <qpe> parameter.

Gommand Syntax: :MMEMory:DOWNload <namo>,<description>,<tlps>,<block_data>

where:

< name > :: = string of up to 10 alphanumeric charac'ters represonting a valid file name

<description > :: = string of up to 32 alphanumeric charactsrs

<t)rpo > :: = inleger (see Table 7-1)

<block_data> ::= @ntentsotfil6 in blockdataformat

bcample: oUTPUT xxX;":Ml'lEl.l0RY:D0trlt{LoAD 'SETUP_'; 'FILE CREATED FROl,l SETUP

QUERY

"
-16127,#800000643. . . "

Table 7-1. File Types

command

MMEMoT Subsystem
7-7

HP 16s28/16538
Programming Reference

File File T!"e

HP L652R SYSTEM
L652R CONFIG
AUTOLOADT\?E
INI\{ERSE ASSEMBLER
TEXTTYPE

-16383

-16096

-15615

-r56L4
-15610

DOWNload

DOWNload

command

The DOWNload command downloads a ftle to the disk. The < name>
parameter specifies the ftlename, the < description> parameter specifies
the ftle description, and the < block_data> contains the contents of the
fue to be downloaded.

Table 7-1 lists the ftle types for the < type > parameter.

Command Syntax: :MMEMory:DOWNload < name> ,< description> ,< type> ,< block_data>

where:

<name>

< description>

<type>

< block_data>

Example:

:: = string of up to 10 alphanumeric characters representing a valid file name

:: = string of up to 32 alphanumeric characters

:: = integer (see Table 7-1)

:: = contents of file in block data format

OUTPUT XXX;":MMEMORY:DOWNLOAD 'SETUP__ '; 'FILE CREATED FROM SETUP
QUERY' ,-16127,#800000643 ... "

Table 7-1. File Types

File File Type

HP 1652/3 SYSTEM -16383
1652/3 CONFIG -16096
AUTOLOAD TYPE -15615
INVERSE ASSEMBLER -15614
TEXT TYPE -15610

HP 16528/16538
Programming Reference

MMEMory Subsystem
7-7

lNlTialize

lNlTialize command

The lNlTialize command formats the disk.

,fCl Once executed, the initialize comnand formats the specifred dis\
NOte t permanently erasing all existing information from the disk. After that,

there is no way to retrieve the original information.

Command Syntax: :MMEMory:lNlTialize

Example: 0UTPUT xxx ; " : I'IMEM0RY : INITIAL IZE"

MMEMoT Subsystem
7-g

HP 16528/16538
Programming Reference

INITialize

INITialize

Command Syntax:

Example:

MMEMory Subsystem
7-8

command

The INITialize command formats the disk.

Once executed, the initialize command formats the specified disk,
permanently erasing all existing information from the disk. After that,
there is no way to retrieve the original information.

:MMEMory:INITialize

OUTPUT XXX;":MMEMORY:INITIALIZE"

HP 16528/16538
Programming Reference

LOAD

LOAD [:GoNFigl command

The LOAD @mmand loads a fi.le from the disk into the anal@r. The

[:CONngl specifier is optional and has no effect on the command. The
< name > p?rameter specifies the fi.lename that wiil be loaded into the
logic analyznr.

,fA Any previous setups and data in the instrument are replaced by the
NOtg f contentsoftheconfigurationfile.

Command Syntax: :MMEMory:LOAD[:COM|gJ < name >

where:

< name > :: = string of up to 10 alphanumeric characlers representing a valid file name

Examples: oUTPUT XXX ; " : l'{l'lEl'l0RY : L0AD : CONFIG' FILE_ "i
OUTPUT XXX; " :l'll,lEMORY : LOAD'FILE_"'
OUTPUT XXX; " :l'lMEl.l:L0AD:CONFIG'FILE A"r

HP 16s28/16s38
Programming Reference

MMEMoT Subsystem
7-g

LOAD [:CONFig]

LOAD

command

I
Note II

Command Syntax:

where:

<name>

Examples:

HP 16528/16538
Programming Reference

The LOAD command loads a file from the disk into the analyzer. The
[:CONfig] specifier is optional and has no effect on the command. The
< name> parameter specifies the filename that will be loaded into the
logic analyzer.

Any previous setups and data in the instrument are replaced by the
contents of the configuration fue.

:MMEMory:LOAD[:CONfig] < name>

:: = string of up to 10 alphanumeric characters representing a valid file name

OUTPUT XXX;":MMEMORY:LOAD:CONFIG 'FILE_""
OUTPUT XXX;":MMEMORY:LOAD 'FILE_'"
OUTPUT XXX;":MMEM:LOAD:CONFIG 'FILE_A'"

MMEMory Subsystem
7-9

LOAD

LOAD [:lASSemblerl command

This variation of the LOAD @mmand allows inverse assembler files to be
loaded into analyznr 1 or nalyzer 2 of the HP L652B,116538. The
< lA_name > pirameter specifies the inverse assembler filelleme. The
parameter after the < IA-name > p?rameter specifies into which
machine the inverse assembler is loaded.

,18 Inverse assembler files should only be loaded into the state anallzer. If an
NOte - inverse assembler file isloadedinto&etiming analyznrno errorwillbe

generated; however, it will not be accessible.

COmmand Syntaxl :MMEMory:LOAD:lASSembler < lA name >,{1 l2}

where:

< lA_name > :: = string of up to 10 alphanumeric charasters representing a valid file name

b<amples: 0UTPUT XXX ; " :I.|MEM0RY : LoAD : IASSET-IBLER' I68020_IP', 1"

OUTPUT XXX; " :l'll,lEl'l: L0AD: IASS' I68020 IP' 1"

MMEMoT Subsystem
7-10

HP 16s2Bl16s38
Programming Relerence

LOAD

LOAD [:IASSembler] command

I
Note til

Command Syntax:

where:

<lA_name>

Examples:

MMEMory Subsystem
7-10

This variation of the LOAD command allows inverse assembler rues to be
loaded into analyzer 1 or analyzer 2 of the HP 1652B/1653B. The
< lA_name> parameter specifies the inverse assembler filename. The
parameter after the < lA_name> parameter specifies into which
machine the inverse assembler is loaded.

Inverse assembler files should only be loaded into the state analyzer. If an
inverse assembler file is loaded into the timing analyzer no error will be
generated; however, it will not be accessible.

:MMEMory:LOAD: IASSembler <1A_name>,{112}

:: = string of up to 10 alphanumeric characters representing a valid file name

OUTPUT XXX;":MMEMORY:LOAD:lASSEMBLER 'l68020_lP' ,1"
OUTPUT XXX;" :MMEM: LOAD: lASS 'l68020_lP r 1"

HP 16528/16538
Programming Reference

PACK

PACK

HP 16s2Bl16s3B
Programming Reference

The PACK command packs the files on a disk in the disk drive.

CommandSyntax: :MMEMory:PACK

Example: OUTPUT xxX;":l'lMElrtoRY:PACK"

command

MMEMoT Subsystem
7-11

PACK

PACK

command

The PACK command packs the fues on a disk in the disk drive.

Command Syntax: :MMEMory:PACK

Example: OUTPUT XXX;": MMEMORY: PACK"

HP 16528/16538 MMEMory Subsystem
Programming Reference 7-11

PURGe

PURGe

Command Syntax:

where:

command

The PURGe @mmand deletes a file from the disk. The < name >
psrameter specifies the filena-e to be deleted.

Once executed, the purge copmand permanently erases all the existing

information from the specified file. After that, there is no way to retrieve
the original information.

:MMEMory:PURGe < name >

:: = string of up to 10 alphanumeric characters representing a valid file name

b<amples: oUTPUT XXX ; " :I'IMEi'|0RY : PURGE'FILtl "'

HP 16528/16538
Programming Reference

MMEMoT Subsystem
7-12

PURGe

PURGe

I
Note"

Command Syntax:

where:

<name>

Examples:

MMEMory SUbsystem
7-12

command

The PURGe command deletes a ftIe from the disk. The < name>
parameter specifies the filename to be deleted.

Once executed, the purge command permanently erases all the existing
information from the specified file. After that, there is no way to retrieve
the original information.

:MMEMory:PURGe <name>

:: = string of up to 10 alphanumeric characters representing a valid file name

OUTPUT XXX;":MMEMORY:PURGE 'FILEl'"

HP 16528/16538
Programming Reference

REName

REName

Note II$

command

The REName sommand renemes a file on the disk. The < name >
p?rameter specifies the fi,lena-e to be changed and the < new name >
parameter specifies the new filename.

You cannot rename a file to an already existing filename.

MMEMoT Subsystem
7-13

Command Syntax! :MMEMory:REName <name),(new_name >

where:

< neme > : : = string of up to 10 alphanumeric charac'ters representing a valid file name

< new_name > :: = string of up to 10 alphanumeric charactgrs representing a valid file name

Examples: 0UTPUT XXX;":iltrlEfl0RY:REilAl,lE'oLDFILE

"'ilEttFILE'"

HP 16528/16538
Programming Reference

REName

I
Note"

REName

command

The REName command renames a ftIe on the disk. The < name>
parameter specifies the filename to be changed and the < new_name>
parameter specifies the new ftIename.

Yon cannot rename a ftIe to an already existing ftIename.

Command Syntax: :MMEMory:REName <name>,<new_name>

where:

<name>

<new_name>

Examples:

HP 16528/16538
Programming Reference

:: = string of up to 10 alphanumeric characters representing a valid file name

:: = string of up to 10 alphanumeric characters representing a valid file name

OUTPUT XXX;":MMEMORY:RENAME 'OLDFILE', 'NEWFILE'"

MMEMory Subsystem
7-13

STORe

STORe

Command Syntax:

where:

< name >

< description >

MMEMoT Subsystem
7-14

[:CONFigl command

The STORe command stores a configrration onto a disk. The [:CONFigJ
specifier is optional and has no effect on the com-and. The < name >
pirameter specifies the file to be stored to the disk. The < description >
p?rameter specifies the file description.

:MMEMory:STORe [:COMigJ < name), (description >

string of up to 10 alphanumeric charactors representing a valid file name

string of up to 32 alphanumeric characters

Example: oUTPUT XXX; " : i,|MEM: STORE 'DEFAULTS ' , 'DEFAULT SETUPS "'

HP 16s2B/16538
Programming Reference

STORe

STORe [:CONFig] command

The STORe command stores a configuration onto a disk. The [:CONFig]
specifier is optional and has no effect on the command. The < name>
parameter specifies the file to be stored to the disk. The < description>
parameter specifies the ftIe description.

Command Syntax: :MMEMory:STORe [:CONfig] < name> I <description>

where:

<name>

< description>

Example:

MMEMory Subsystem
7-14

:: = string of up to 10 alphanumeric characters representing a valid file name

:: = string of up to 32 alphanumeric characters

OUTPUT XXX;":MMEM:STORE 'DEFAULTS', 'DEFAULT SETUPS'"

HP 16528/16538
Programming Reference

UPLoad

UPLoad

HP 16528/16s38
Programming Reference

query

The UPLoad query uploads a file. The <neme> parameter specifies the
file to be uploaded from the disk. The contents of the file are sent out of
the instrument in block data form.

QuerySyntax: :MMEMory:UPLoad? <name>

where:

< name > :: = string of up to 10 alphanumeric characters representing a valid file namo

Returned Format: [:MMEMory:UPLoad] <block_data> <NL>

Example: l0 DIl.t Block$[32000] lallocate enough nemory for block data
20 DII{ Specif ier$ [2]
30 0UTPUT XXX;":SYSTEII HEAD OFF"

40 0UTPUT XXX;":ltll,lEllORY:UPL0AO? 'FILEI'" !send upload query

50 ENTER XXX USIiIG "#,2A";Specifier$!read in #8

60 ENTER XXX USING "#,80";Length lread in block length
70 ENTER XXX USING "-K";Block$ lread 'in file
80 El{D

MMEMoT Subsystem
7-15

UPLoad

UPLoad

query

The UPLoad query uploads a file. The < name> parameter specifies the
flie to be uploaded from the disk. The contents of the ftIe are sent out of
the instrument in block data form.

Query Syntax: :MMEMory:UPLoad? <name>

where:

<name>

Returned Format:

:: = string of up to 10 alphanumeric characters representing a valid file name

[:MMEMory:UPLoad] <block_data> <NL>

!allocate enough memory for block dataExample: 10 DIM 8lock$[32000]
20 DIM Specifier$[2]
30 OUTPUT XXX;":SYSTEM HEAD OFF"
40 OUTPUT XXX;": MMEMORY: UPLOAD? ' FI LEI rr,

50 ENTER XXX USING u#,2A";Specifier$
60 ENTER XXX USING u#,8D";Length
70 ENTER XXX USING "-K";8lock$
80 END

!send upload query
!read in #8
!read in block length
! read in fi le

HP 16528/16538
Programming Reference

MMEMory Subsystem
7-15

DLIST Subsystem

lntroduction The DLIST (dud list) subsystem contains the commands in the dual state
listing menu. These commands are:

o COLumn
o LINE

lobel-norne

COLumn ?

I i ne-nurn-r'ri d-s c r een

col_num : integer from I to 8
label_name - a string of up to 6 alphanumeric characten
base : {BINary | HUtucecimal I O CTal

I
DECimal IAS Cii I SYtuIBoll

mach_num : {I 12!.
Iine_num_mid_scnsen : integerfrom -1023 to + 1023

Figure 8-1. DLISI Subsystem Syntax Diagram

HP 16528/16s38
Programming Reference

DLIST Subsystem
8-1

DllSt SUbsystem 8
Introduction The DLISt (dual list) subsystem contains the commands in the dual state

listing menu. These commands are:

• COLumn
• LINE

LINE? t-----------------------
01650505

col_Dum = integerfrom 1 to 8
label_Dame = a string ofup to 6 alphanumeric characters
base = {BINary IHEXacecimal IOCTal IDECimal lASCii ISYMBol}
mach_num = {112}
line_Dum_mid_screeD = integerfrom -1023 to + 1023

Figure 8-1. DllSt SUbsystem Syntax Diagram

HP 16528/16538
Programming Reference

DllSt Subsystem
8-1

DLIST

DLIST

DLISI Subsystem
v2

selector

The DLIST selector (dual list) is used as part of a compound header to
ascess those set'ings normally found in the Dual State Listing menu. The
dud list displays data when two state analpers are nrn simultaneously.

Command Syntax :DLlst

Example: ouTpuT xxx; ":DLIST:LINE 0, 1"

HP 16s28/1653B
Programming Reference

DLISt

DLISt

Command Syntax:

Example:

DLISt Subsystem
8-2

selector

The DLISt selector (dual list) is used as part of a compound header to
access those settings normally found in the Dual State Listing menu. The
dual list displays data when two state analyzers are run simultaneously.

:DLlSt

OUTPUT XXX;":DLIST:LINE 0,1"

HP 16528/16538
Programming Reference

COLumn

COLumn

HP 16529./16538
Programming Reference

command/query

The COLumn command allows you to configure the state analper list
displayby assigning a label name and base to one of eight vertical columns
in the menu. The machine number parameter is required since the same

label name can occur in both state machines at once. A column number
of 1 refers to the left-most column. When a label is assiped 1s 3 cohrmn
it replaces the original label in that column. The label originally in the
specified sslrrmn is placed in the colu-tt the specified label is moved from.

When TAGS" is the label name, the TAGS column is assu-ed and the
next parameter must speci$ REl-ative or ABSolute. The machine
number should be 1.

The COLumn query returns the colu-t' number, label name, and base for
the specified column.

Command Syntax: :DLlStCOLumn <col_num>,{"TAGS',{REtativelABsolute}l
< label_name >, < base >), <mech_num >

where:

<col_num> ri= {1 l2lgl4lslOlzls}
<label_name > it = 8 string of up to 6 alphanumeric charac'ters

< base > ii = {BlNary lHExadecimal lOCTal lDECimal lASCii I SYMBoI}

<mach num> ::= {1 12}

Example: oUTPUT

DLIST Subsystem
8-3

COLumn

COLumn

command/query

The COLumn command allows you to configure the state analyzer list
display by assigning a label name and base to one of eight vertical columns
in the menu. The machine number parameter is required since the same
label name can occur in both state machines at once. A column number
of 1 refers to the left-most column. When a label is assigned to a column
it replaces the original label in that column. The label originally in the
specified column is placed in the column the specified label is moved from.

When "TAGS" is the label name, the TAGS column is assumed and the
next parameter must specify RELative or ABSolute. The machine
number should be 1.

The COLumn query returns the column number, label name, and base for
the specified column.

Command Syntax: :DLlSt:COLumn <col_num > ,{"TAGS",{RELative IABSolute} I
< label_name>, < base> }, < mach_num >

where:

<col_num>

< label_name>

<base>

<mach_num>

Example:

HP 16528/16538
Programming Reference

::= {112131415161718}
:: = a string of up to 6 alphanumeric characters

:: = {BINary IHexadecimal IOCTal IDECimal IASCii ISYMBol}

:: = {112}

OUTPUT XXX;":DLIST:COLUMN 4, 'DATA' ,HEXADECIMAL,l"

DLISt Subsystem
8-3

COLumn

QuerySyntax :DLlSi:COLumn? <col_num>

Returned Format: [:DLlStCOLlmn] <col_num>,<label_nam€>,<base>,<mach-num> <NL>

Example: 10 DrM ctg[too]
20 OUTPUT XXX; " : DL I ST : C0LUMN? 4"

30 ENTER XXX; C l$

40 PRINT CI$

50 END

DLISI Subsystem
8-4

HP 16s28/16s38
Programming Reference

COLumn

Query Syntax:

Returned Format:

Example:

DLISt SUbsystem
8-4

:DLlSt:COLumn? <col_num>

[:DLlStCOLumn] <col_num >, < label_name>, <base>, <mach_num > < NL>

10 DIM C1$ [100]
20 OUTPUT XXX;":DLIST:COLUMN? 4"
30 ENTER XXX;C1$
40 PRINT C1$
50 END

HP 16528/16538
Programming Reference

LINE

LINE

HP 16528.116538
Programming Reference

command/guery

The LINE command allows you to scroll the state analper listing
vertically. The command specifies the state line number relative to the
trigger that the specified analper will highlight at center screen.

The LINE query returns the line number for the state currently in the box
at center screen and the machine nunber to which it belo"gs.

Command Syntax: :DLISI:LINE <line_num_mid_scroen>,<mach_num>

where:

<line_num_mid_screen> ::= integerfrom -1023to +1023
<mach num> ::= {l 12}

Example: oUTPUT XXX; ":DLIST:LINE 511, 1"

Query Syntax: :DLtst:LINE?

Returned Format: [DLlSt:LINEJ < line_num_mid_screen), (mach_num > < NL>

Example: to DrM Lng [1oo]
20 0UTPUT XXX; " :DLIST: LINE?"

30 ENTER XXX; Ln$

40 PR I t{T Ln$

50 Et{D

DLIST Subsystem
8-5

LINE

LINE

command/query

The LINE command allows you to scroll the state analyzer listing
vertically. The command specifies the state line number relative to the
trigger that the specified analyzer will highlight at center screen.

The LINE query returns the line number for the state currently in the box
at center screen and the machine number to which it belongs.

Command Syntax: :DLlSt:LlNE <line_num_mid_screen>,<mach_num>

where:

< line_num_mid_screen >

<mach_num>

Example:

Query Syntax:

:: = integer from -1023 to + 1023

:: = {112}

OUTPUT XXX;":DLIST:LINE 511,1"

:DLlSt:LINE?

Returned Format: [DLlSt:LlNE] <line_num_mid_screen>,<mach_num> <NL>

Example:

HP 16528/16538
Programming Reference

10 DIM Ln$ [100]
20 OUTPUT XXX;":DLIST:LINE?"
30 ENTER XXX;Ln$
40 PRINT Ln$
50 END

OLISt Subsystem
8-5

r

r

r

r

WLISI Subsystem

lntroduction TWo @mmands in the WLIST subsystem control the X and O marker
placement on the wavefor-s portion of the Timingstate mixed mode
display. These commands are XTIMe and OTIMe. The XSTate and
OSTate queries return what states the X and O markers iue on. Since the
markers can only be placed on the liming wavefonns, the queries return
what state (state acquisition memory location) the marked pattern is

stored in.

In order to have mixed mode, one machine mrut be a liming analyznr and
the other must be a state analyznr with time tagging on (use

MACHine < N > :STRace:TAG TIME).

Figure 9.1. WLISI Subsystem Syntax Diagram

WLISI Subsystem
9-1

Nore|f,

time value : ftal number

HP 16s28/16s38
Programming Reference

0STote?

XSTote?

OTIMe t rme-vo lue

OTIMe?

XTIMe t ime-vo i ue

XT IMe?

WLISt SUbsystem 9
Introduction

I
Note II

Two commands in the WLISt subsystem control the X and 0 marker
placement on the waveforms portion of the Timing/State mixed mode
display. These commands are XTIMe and OTIMe. The XSTate and
OSTate queries return what states the X and 0 markers are on. Since the
markers can only be placed on the timing waveforms, the queries return
what state (state acquisition memory location) the marked pattern is
stored in.

In order to have mixed mode, one machine must be a timing analyzer and
the other must be a state analyzer with time tagging on (use
MACHine < N> :STRace:TAG TIME).

XTIMe? 1----------------------"
16510/SX03

time_value = real number

Figure 9-1. WLISt Subsystem Syntax Diagram

HP 16528/16538
Programming Reference

WLISt Subsystem
9-1

WLIST

WLIST

Note {$

selector

The WLIST (Waveforms/listing) selector is used as a part of a compound
header to access the settings normally found in the Mixed Mode menu.
Since the WLIST command is a root level command, it will always appeiu
as the first element of a compound header.

The WLIST Subsystem is only available when one state analyzer (with time
tagging on) and one timing analyer :ue specified.

Example: oUTPUT xxx; " :l,llIsT:XTIME 40. 0E-6"

HP 16528,/16538
Programming Reference

Command Syntax: :wltst

WLISI Subsystem
9-2

WLISt

WLISt

I
Note"

Command Syntax:

Example:

WLISt Subsystem
9-2

selector

The WLISt (Waveformsllisting) selector is used as a part of a compound
header to access the settings normally found in the Mixed Mode menu.
Since the WLISt command is a root level command, it will always appear
as the fust element of a compound header.

The WLISt Subsystem is only available when one state analyzer (with time
tagging on) and one timing analyzer are specified.

:WLISt

OUTPUT XXX;":WLIST:XTIME 40.0E-6"

HP 16528/16538
Programming Reference

OSTate

OSTate

HP 16528/16538
Programming Reference

guery

The OSTate query returns the state where the O Marker is positioned. If
data is not valid the query rctwns3T767.

QuerySyntax: :wLrsrosrate?

Returned Format: [:wLtSroSTatel <state_num><NL>

where:

<state num> ::= integer

Example: to Drlt sog [too]
20 OUTPUT XXX; " : l,ll I ST: 0STATE?"

30 ENTER XXX; So$

40 PRINT So$

50 END

WLISI Subsystem
9..3

eSTate

eSTate

query

The OSTate query returns the state where the 0 Marker is positioned. If
data is not valid, the query returns 32767.

Query Syntax: :WLlSt:OSTate?

Returned Format: [:WLlSt:OSTate] <state_num> <NL>

where:

Example:

HP 16528/16538
Programming Reference

:: = integer

10 DIM 50$ [100J
20 OUTPUT XXX;":WLI5T:OSTATE?"
30 ENTER XXX;50$
40 PRINT 50$
50 END

WLISt Subsystem
9-3

XSTate

XSTate

WLISI Subsystem
H

query

The XSTate query returns the state where the X Marker is positioned. If
data is not valid the query retans32767.

QuerySyntax :wLtsrXSTare?

E:<ample: oUTPUT xxx,":ULIST:xSTATE?

Retumed Format: [:wLlSt)GTate] <stare_num> <NL>

where:

<state num> ::= integer

Example: 10 DIr'r sxg[roo]
20 0UTPUT XXX ; " :I'lLIST :XSTATE?"

30 ENTER XXX; Sx$

40 PRINT Sx$

50 END

HP 16528,/16538
Programming Reference

XSTate

XSTate query

The XSTate query returns the state where the X Marker is positioned. If
data is not valid, the query returns 32767.

Query Syntax: :WUSt:XSTate?

Example: OUTPUT XXX," :WLIST:XSTATE?

Returned Format: [:WLISt:XSTate] <state_num> <NL>

where:

<state_num>

Example:

WLISt Subsystem
9-4

::= integer

10 DIM Sx$ [100]
20 OUTPUT XXX;":WLIST:XSTATE?"
30 ENTER XXX;Sx$
40 PRINT Sx$
50 END

HP 16528/16538
Programming Reference

OTIMe

OTIMe

Command Syntax:

where:

<time_value > ::= real number

Example: 0uTpuT xxx, " :r,llIST : 0TIt'lt 40. 0e-6"

Query Syntaxl :wLtst:olMe?

Returned Format: [:wLlSt:orlMe] <time_value> <NL>

Example: 1o DrM Tog [1oo]
20 0UTPUT XXX; ":bJLIST:0TIl"!E?"

30 ENTER XXX;To$

40 PRINT To$

50 END

HP 16528.116538
Programming Reference

command/query

The OTIMe command positions the O Marker on the liming waveforms in
the mixed mode display. If the data is not valid, the command performs
no action.

The OTIMe query returns the O Marker position in time. If data is not
valid, the query returns 9.9837.

:WLlSt:OTlMe < time value >

WUSI Subsystem
9.'5

OTIMe

OTIMe

command/query

The OTIMe command positions the 0 Marker on the timing waveforms in
the mixed mode display. If the data is not valid, the command performs
no action.

The OTIMe query returns the 0 Marker position in time. If data is not
valid, the query returns 9.9E37.

Command Syntax: :WLlSt:OTIMe <time_value>

where:

<time_value>

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

:: = real number

OUTPUT XXX,":WLIST:OTIME 40.0e-6"

:WLlSt:OTIMe?

[:WLlSt:OTIMe] <time_value> < NL>

10 DIM To$ [100]
20 OUTPUT XXX;":WLIST:OTIME?"
30 ENTER XXX;To$
40 PRINT To$
50 END

WLISt Subsystem
9-5

XTIMe

XTIMe

WLISI Subsystem
9-6

command/query

ft"#y;ff"1ilT,1,:?'i,XTff f #,Tfi t',ly;ffi ff ::f:ffi '
no action.

The XTIMe query returns the X Marker position in time. If data is not
valid, the query returns 99837.

Command Syntax: :wLtSrxltMe <time_vatus>

where:

<time value > :: = real number

Example: 0uTpuT xxx, " :lJLIsT :XTIME 40. 0E-6"

Query Syntax: :wLtst:XTtMe?

Returned Format: [:\A/LtSt:xItMeJ <time_vatue> <NL>

Example: to DIr't Txg [1oo]
20 OUTPUT XXX ; " :|JLIST :XTIME?"

30 ENTER XXX; Tx$

40 PRINT Tx$

50 END

HP 16s2B./16538
Programming Reference

XTIMe

XTIMe command/query

The XTIMe command positions the X Marker on the timing waveforms in
the mixed mode display. If the data is not valid, the command performs
no action.

The XTIMe query returns the X Marker position in time. If data is not
valid, the query returns 9.9E37.

Command Syntax: :WLlStXTIMe <time_value>

where:

<time_value>

Example:

Query Syntax:

Returned Format:

Example:

WLISt Subsystem
9-6

:: = real number

OUTPUT XXX,":WLIST:XTIME 40.0E-6"

:WLlStXTIMe?

[:WLISt:XTIMe] <time_value> < NL>

10 DIM Tx$ [100]
20 OUTPUT XXX;":WLIST:XTIME?"
30 ENTER XXX;Tx$
40 PRINT Tx$
50 END

HP 16528/16538
Programming Reference

r

r

MACHine Subsystem 10
Introduction

HP 1652B.116s38
Programming Relerence

o SFORmat subsystem
o STRace subsystem
o SLIST subsystem
o SWAVeform subsystem
o SCHart subsystem
o COMPare subsystem
o TFORmat subsystem
o TTRace subsystem
. TWAVeform subsystem
o SYMBoI subsystem

The IvIACHine subsystem contains the commands available for the
State/Timing Confrguration menu. These conmilnds are:

o ARM
o ASSigp
. AUToscale (Timine Analyzer only)
o NAME
. TWE

There are actually two MACHine subsystems: MACHinel and
MACHineZ. Unless noted, they are identical. In the synta:r definitions
you will see NdACHioe{ Ll?I anytime the subject is applicable to both
subsystems.

Additionally, the following subsystems are a part of the MACHine
subsystem. Each is e4plained in a separate chapter.

(chapter 11)
(chapter L2)
(chapter 13)
(chapter 14)
(chapter 15)
(chapter 16)
(chapt er L7)
(chapter 18)
(chapter 19)
(chapter ?n)

MACHine Subsystem
1Gl

MACHine SUbsystem 10
Introduction The MACHine subsystem contains the commands available for the

Staterriming ConfIgUration menu. These commands are:

• ARM
• ASSign
• AUToscale (Timing Analyzer only)

• NAME
• TYPE

There are actually two MACHine subsystems: MACHinel and
MACHine2. Unless noted, they are identical. In the syntax defmitions
you will see MACHine{112} anytime the subject is applicable to both
subsystems.

Additionally, the following subsystems are a part of the MACHine
subsystem. Each is explained in a separate chapter.

HP 16528/16538
Programming Reference

• SFORmat subsystem
• STRace subsystem
• SLISt subsystem
• SWAVeform subsystem
• SCHart subsystem
• COMPare subsystem
• TFORmat subsystem
• TTRace subsystem
• TWAVeform subsystem
• SYMBol subsystem

(chapter 11)
(chapter 12)
(chapter 13)
(chapter 14)
(chapter 15)
(chapter 16)
(chapter 17)
(chapter 18)
(chapter 19)
(chapter 20)

MACHine Subsystem
10-1

orrL_source

ASS i gn pod-l ist

ASSIGN?

AUTosco I e

moch ine-nome

SfATe

TIMing

arm_source : {RUN I IuIACHine {I | 2Ilr
pod_list : {NONE | <pod:tum> [, <podJrum> J...I
pod_num: {1]12 l3l4l5I
machine_name : string of up to 10 alphanumeic characten

Figure 1(F1. Machine Subsystem Syntax Diagram

MACHine Subsystem
1G|2

HP 16529./16538
Programming Reference

mach i ne_nome I------~

TYPE? 1-----------------"
16510/SX02

arm_source = {RUN I MACHine {l 1 2}}
pod_list = {NONE 1 <pod_num > [, <pod_num > J... }
pod_num = {l 12 13 1415}
machine_name = string ofup to 10 alphanumeric characters

Figure 10-1. Machine Subsystem Syntax Diagram

MACHine Subsystem
10-2

HP 16528/16538
Programming Reference

MACHine

MACHine

Command Syntax:

HP 16528/16s38
Programming Reference

where:

<N> li= {1 12} (thenumberof themachine)

Example: oUTPUT xXX; ": MACHINEl : NAt-tE 'DRAMTEST "'

selec{or

The I\,IACHine < N > selector specifies which of the two anallzers
(machines) available in the HP L652B153B the commands or queries
following will refer to. Since the MACHine < N > command is a root
level mmmand, it wiil normally appear as the first element of a compound
header.

:MACHine < N >

MACHine Subsystem
1&3

MACHine

MACHine

selector

The MACHine < N> selector specifies which of the two analyzers
(machines) available in the HP 1652B/53B the commands or queries
following will refer to. Since the MACHine < N> command is a root
level command, it will normally appear as the fIrst element of a compound
header.

Command Syntax: :MACHine < N>

where:

<N>

Example:

HP 16528/16538
Programming Reference

:: = {112} (the number of the machine)

OUTPUT XXX; ":MACHINEl:NAME 'DRAMTEST'"

MACHine Subsystem
10-3

ARM

ARM

MACHine Subsystem
1&4

command/query

The ARM co--and specifies the arming source of the specified analyzrr
(machine).

The ARM query returns the source that the current analyzer (machine)
will be armed by.

Command Syntax: :MACHine{l12}:ARM <arm_souroe>

where:

< arm_source > ': = {RUN I MACHine{ 1 l2I I BNC I SCOPe}

Example: oUTPUT XXX ; " : l-tAcHI NEI : ARt"t I-IACHINE2"

Query Syntax: :MACHine {112}:ARM?

Returned Format: [:MACHine {1 f 2}:ARMJ <arm_souroe> <NL>

Example: 10 DIM String$ tlool
20 OUTPUT)OOC ':MACHINEI:ARM?"

30 ENTER)OOC String$

40 PRINT String$

50 END

HP 16528,/16538
Programming Relerence

ARM

ARM command/query

The ARM command specifies the arming source of the specified analyzer
(machine).

The ARM query returns the source that the current analyzer (machine)
will be armed by.

Command Syntax: :MACHine{112}:ARM <arm_source>

where:

<arm_source>

Example:

Query Syntax:

Returned Format:

Example:

MACHine Subsystem
10-4

::= {RUNIMACHine.{112}IBNCISCOPe}

OUTPUT XXX;":MACHINEl:ARM MACHINE2"

:MACHine {112}:ARM?

[:MACHine {112}:ARM] <arm_source> <NL>

10 DIM StringS [100]

20 OUTPUT XXX; M: MACHINE1 :ARM?"

30 ENTER XXX; String$

40 PRINT StringS

50 END

HP 16528/16538
Programming Reference

ASSign

ASSign command/query

The ASSign co'nmand assigns pods to a particular analyzer (machine).

The ASSign query returns which pods are assigned to the current atalyznr
(machine).

Command Syntax :MACHine{i l2}:ASSign <pod_tist>

where:

<pod_list> ll= {NONEI <pod #>I, <pod #>J...}
<pod#> ir= {1l2l3l4ls}

E><ample:

Query Syntax:

Returned Format:

Example:

HP 16s28/16s38
Programming Reference

OUTPUT XXX;":MACHINEl:ASSIGN 5, 2, 1"

:MACHine {1 l2}:ASSign?

[:MACHINE {1 l2}:ASSignJ <pod_list> < NL>

10 DIM String$ [100]
20 0UTPUT XXX ; " :MACHII{EI :ASSIGN?"

30 ENTER XXX; Str i ng$

40 PRINT String$
50 END

MACHine Subsystem
1G5

ASSign

ASSign

command/query

The ASSign command assigns pods to a particular analyzer (machine).

The ASSign query returns which pods are assigned to the current analyzer
(machine).

Command Syntax: :MACHine{112}:ASSign <pod_list>

where:

<podJist>
<pod #>

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

:: = {NONEI <pod #> [, <pod #>]...}

:: = {112131 4 15}

OUTPUT XXX;":MACHINE1:ASSIGN 5, 2, 1"

:MACHine {112}:ASSign?

[:MACHINE {112}:ASSign] <pod_list> <NL>

10 DIM StringS [100]
20 OUTPUT XXX;":MACHINE1:ASSIGN?"
30 ENTER XXX;String$
40 PRINT StringS
50 END

MACHine Subsystem
10-5

AUToscale

AUToscale command

The AUToscale command causes the crurent analyzer (machine) to
autoscale if the current machine is s timing anal@r. If the current
machine is not 3 timing analyzer, the AUToscale command is ignored.

AUToscale is an Overlapped Command. Overlapped Commands allow
execution of subsequent commands while the logic analyzer operations
initiated by the Overlapped Command are still in progress. Command
overlapping can be avoided by usrng the *OPC and *WAI commands in
conjunction with AUToscale (see chapter 5, nCommon Commands.")

When the AUToscale command is issued, existing timin g analyzer
configrrrations are erased and the other analyzer is turned off.

: MACHine { 1 | 2} :AUToscale

Nore {$

Command Syntax:

Example: oUTPUT

MACHine Subsystem
1(F6

HP 16528/16538
Programming Reference

AUToscale

AUToscale

I
Note II

Command Syntax:

Example:

MACHine Subsystem
10-6

command

The AUToscale command causes the current analyzer (machine) to
autoscale if the current machine is a timing analyzer. If the current
machine is not a timing analyzer, the AUToscale command is ignored.

AUToscale is an Overlapped Command. Overlapped Commands allow
execution of subsequent commands while the logic analyzer operations
initiated by the Overlapped Command are still in progress. Command
overlapping can be avoided by using the *OPC and *WAI commands in
conjunction with AUToscale (see chapter 5, "Common Commands.")

When the AUToscale command is issued, existing timing analyzer
configurations are erased and the other analyzer is turned off.

:MACHine{112}:AUToscale

OUTPUT XXX;":MACHINE1:AUTOSCALE"

HP 16528/16538
Programming Reference

NAME

NAME

HP 16528/16538
Programming Reference

command/query

The NAME command allows you to assign a name of up to 10 characters
to a particular anlalyzrr (machine) for easier identification.

The NAME query returns the current analqrzer nrme ali an ASCII string.

Command Syntax: :MACHine{l12}:NAME <machine_name>

where:

< machine_name > :: = string ot up to 10 alphanumeric characters

Example: oUTPUT xxX;":itACHIilEl:NArlE'DRAtr{TtST"'

Query Syntax: :MACHine{r l2}:NAME?

Returned Format: [MACHina{1 l2i:NAME] <machine name> <NL>

Example: to DIM String$ [1oo]
20 0UTPUT XXX ; " : I'IACHINEl : NAI,{E?"

30 ENTER XXX ; Str i ng$

40 PRINT String$
50 END

MACHine Subsystem
1o-7

NAME

NAME

command/query

The NAME command allows you to assign a name of up to 10 characters
to a particular analyzer (machine) for easier identification.

The NAME query returns the current analyzer name as an ASCII string.

Command Syntax: :MACHine{112}:NAME <machine_name>

where:

<machine_name>

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

:: = string of up to 10 alphanumeric characters

OUTPUT XXX;":MACHINE1:NAME 'DRAMTEST'"

:MACHine{112}:NAME?

[MACHine{112}:NAME] <machine name> <NL>

10 DIM String$ [100]
20 OUTPUT XXX;":MACHINE1:NAME?"
30 ENTER XXX;String$
40 PRINT String$
50 END

MACHine Subsystem
10-7

TYPE

TYPE

Command Syntax:

where:

< anallzer type >

Example:

Query Syntax:

Returned Format:

Example:

MACHine Subsystem
10-g

:: = {OFF I STATe I TlMing }

OUTPUT XXX; " :lvlACHINEl :TYPE STATE"

:MACHine{ 1 l2}:TYPE?

[:MACHine{1 f 2}:WPE] <analyzer tyrye > < NL>

10 DItl String$ [100]
20 0UTPUT XXX ; " : l.lACHINE1 : TYPE?"

30 EiiTER XXX ; Str i ng$

40 PRINT String$
50 END

commandlquery

The T\?E command specifies what type a specified anal@r (machine)
will be. The analpr tlpes are state s1 [iming. The TnE command atso
allows you to turn off a particular machine.

n't" q!$ Ody one of the two analpers can be specified 35 3 timing anallzer at one

The TY?E query returns the current analper tlpe for the specified
analyznr.

:MACHine{1 l2}:WPE < analyzer type >

HP 16528/16s38
Programming Reference

TYPE

TYPE

I
Note"

command/query

The TYPE command specifies what type a specified analyzer (machine)
will be. The analyzer types are state or timing. The TYPE command also
allows you to tum off a particular machine.

Only one of the two analyzers can be specified as a timing analyzer at one
time.

The TYPE query returns the current analyzer type for the specified
analyzer.

Command Syntax: :MACHine{112}:TYPE <analyzer type>

where:

< analyzer type >

Example:

Query Syntax:

Returned Format:

Example:

MACHine Subsystem
10-8

::= {OFFISTATeITIMing}

OUTPUT XXX;":MACHINE1:TYPE STATE"

:MACHine{112}:TYPE?

[:MACHine{112}:TYPE] < analyzer type > < NL >

10 DIM StringS [100J
20 OUTPUT XXX;":MACHINE1:TYPE?"
30 ENTER XXX;String$
40 PRINT StringS
50 END

HP 16528/16538
Programming Reference

SFORmat Subsystem 11

Introduction

HP 16528/16s38
Programming Reference

The SFORmat subsystem contains the commands available for the State
Format menu in the HP 16528,/538 logic analyznr. These @mmands are:

. CLOCk
o CPERiod
o I-ABel
. MASTeT
o REMove
o SLAVe
o THReshold

Figure 11-1. SFORmat Subsystem Syntax Diagram

SFORmat Subsystem
1 1-1

pod-specificotion

SFORmat SUbsystem 11
Introduction The SFORmat subsystem contains the commands available for the State

Format menu in the HP 1652B/53B logic analyzer. These commands are:

• CLOCk

• CPERiod

• LABel

• MASTer

• REMove

• SLAVe

• THReshold

Figure 11-1. SFORmat Subsystem Syntax Diagram

HP 16528/16538
Programming Reference

SFORmat Subsystem
11-1

MASTeT c I ock-spec

SLAVe c I ock-spec

THResho I d<N>

THReshc I d<N>?

(N> : {I l2 l3 l4l sI
GT = GreaterThan60ns
W = Less Than 60ns
name : string of up to 6 alphanumeric characten
polarity = {POSitive I NEGative}
pod-specilication : format (integerfrom 0 to 655j5) for a pod (pods are assigned in dcueasing order)
cfock_id:VlKlLlMlN],
clock_spec : IOFF I RISing I FALLing I BOTH I LOW I HIGHI
yalue : vohage (real number) -9.9 to +9.9

Figure 11-1. SFORmat Subsystem Syntax Diagram (continued)

SFORmat Subsystem
11-2

HP 16528/16538
Programming Reference

THResho I d<N>? ~----------------------
16510507

<N> = {l 12 13 1415}
GT = Greater Than 60 ns
LT =Less Than 60 ns
name = string ofup to 6 alphanumeric characters
polarity = {POSitive I NEGative}
pod_specification = fonnat (integer from 0 to 65535) for a pod (pods are assigned in decreasing order)
clock_id = {J IK ILIM I N}
clock_spec = {OFF I RISing IFALLing IBOTH ILOW IHIGH}
value = voltage (real number) -9.9 to + 9.9

Figure 11-1. SFORmat Subsystem Syntax Diagram (continued)

SFORmat Subsystem
11-2

HP 16528/16538
Programming Reference

SFORmat

SFORmat selector

The SFORmat (State Format) selector is used as a part of a compound
header to access 1f,s s,sttings in the State Format menu. It always follows
the MACHine selector because it selects a branch directlv below the
MACHine level in the command tree.

Command Syntax: :MAGHine{1 l2}:SFORrnat

Example: ouTpuT XXX ; " : ptAcHINEz : sF0RMAT :I'IASTER J, RISING"

HP 16s2Bl16538
Programming Reference

SFORmat Subsystem
1 1-3

SFORmat

Command Syntax:

Example:

HP 16528/16538
Programming Reference

SFORmat

selector

The SFORmat (State Format) selector is used as a part of a compound
header to access the settings in the State Format menu. It always follows
the MACHine selector because it selects a branch directly below the
MACHine level in the command tree.

:MACHine{112}:SFORmat

OUTPUT XXX;":MACHINE2:SFORMAT:MASTER J, RISING"

SFORmat Subsystem
11-3

cLock

cLock command/query

The CLOCk command selects the clocking mode for a given pod when the
pod is assigned to the state analyzer. When the NORMaI option is
specified the pod will sample all 16 chennels on the master clock. When
the MIXed option is specified, the upper 8 bits will be sampled by the
master clock and the lower 8 bits will be sampled by the slave clock.
When the DEMultiplex option is specified, the lower 8 bits will be
sampled on the slave clock and then sampled again on the master clock.
The master clock always follows the slave clock when both are used.

The CLOCk query returns the current clocking mode for a given pod.

Command Syntax: :MACHine{l I2}:SFORmaTCLOCk<N> <ctock_mode>

where:

< N > :: = pod {1 12l3l4 ls}
<clock_mode> 1;= {NQRMal I MXed I DEMultiplex}

Example: 0UTPUT xXX ; " : I-IACHINEI : SFoRMAT : CLOCK2 NoRMAL"

Query Syntaxi :MACHine{l l2}:SFORmat:CLOCk < N > ?

Returned Format: [:MACHine{l |2}:SFORmaI:GLOCK< N >] <ctock mode > < NL>

Example: 10 DIM Stringg ttool
20 OUTPUT XXX; " :IIACHINt1 : SF0RMAT:CL0CKZ?"

30 ENTER XXX; Str i ng$

40 PRINT String$
50 E r{D

SFORmat Subsystem
11-4

HP 16528/16s38
Programming Relerence

CLOCk

CLOCk command/query

The CLOCk command selects the clocking mode for a given pod when the
pod is assigned to the state analyzer. When the NORMal option is
specified, the pod will sample all 16 channels on the master clock. When
the MIXed option is specified, the upper 8 bits will be sampled by the
master clock and the lower 8 bits will be sampled by the slave clock.
When the DEMultiplex option is specified, the lower 8 bits will be
sampled on the slave clock and then sampled again on the master clock.
The master clock always follows the slave clock when both are used.

The CLOCk query returns the current clocking mode for a given pod.

Command Syntax: :MACHine{112}:SFORmatCLOCk<N> <clock_mode>

where:

<N>
< clock_mode>

Example:

Query Syntax:

Returned Format:

Example:

SFORmat Subsystem
11-4

:: = Pod {112131415}
:: = {NORMal I MIXed I DEMultiplex}

OUTPUT XXX;":MACHINE1:SFORMAT:CLOCK2 NORMAL"

:MACHine{112}:SFORmatCLOCk < N>?

[:MACHine{112}:SFORmatCLOCK< N>] <clock_mode> < NL>

10 DIM String$ [100]
20 OUTPUT XXX; ":MACHINE1:SFORMAT:CLOCK2?"
30 ENTER XXX; String$
40 PRINT String$
50 END

HP 16528/16538
Programming Reference

CPERiod

CPERiod

HP 16528116538
Programming Reference

command/query

The CPERiod co--and allows you to set the state anallzer for input
clock periods of greater than or less than 60 ns. Either LT or GT can be
specified. LT signifies a state input clock period of less than 60 ns, and
GT signifies a period of greater than 60 ns.

Because count taeging requires 3 minimum clock period of 60 ns, the
CPERiod and TAG commands are interrelated (the TAG command is in
the STRace subsystem). When tle clock period is set to Less Than, count
tagging is turned off. When count tagging is set to either state or time, the
clock period is automatically set to Greater Than.

The CPERiod query returns the current setting of clock period.

command syntax: :MAGHine{1 l2}:sFoRmarcPERiod {LTIGT}

where:

GT :: - greater than 60 ns

LT :: = less than 60 ns

Example: oUTPUT xXX; " : l,lAcHI NEz : SFoRMAT: CPERIoD GT"

Query Syntax: :MACHine{1 l2}:SFORmat:CPERiod?

Returned Format: [:MACHine{1 l2}:SFORmat:CPERiodJ {GT I LT} < NL>

Example: 1o D It,t Str i ngg [1oo]
20 OUTPUT XXX; " : I'{ACHI NEZ : SF0Ri-|AT: CPERI0D?

30 TNTER XXX; Str i ng$

40 PRINT String$
50 END

SFORmat Subsystem
1 1-5

CPERiod

CPERiod

command/query

The CPERiod command allows you to set the state analyzer for input
clock periods of greater than or less than 60 ns. Either LT or GT can be
specified. LT signifies a state input clock period of less than 60 ns, and
GT signifies a period of greater than 60 ns.

Because count tagging requires a minimum clock period of 60 ns, the
CPERiod and TAG commands are interrelated (the TAG command is in
the STRace subsystem). When the clock period is set to Less Than, count
tagging is turned off. When count tagging is set to either state or time, the
clock period is automatically set to Greater Than.

The CPERiod query returns the current setting of clock period.

Command Syntax: :MACHine{112}:SFORmatCPERiod {LTIGT}

where:

GT

LT

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

:: = greater than 60 ns

:: = less than 60 ns

OUTPUT XXX;":MACHINE2:SFORMAT:CPERIOD GT"

:MACHine{112}:SFORmat:CPERiod?

[:MACHine{112}:SFORmat:CPERiod] {GTILT}<NL>

10 DIM String$[100]
20 OUTPUT XXX;":MACHINE2:SFORMAT:CPERIOD?
30 ENTER XXX; String$
40 PRINT String$
50 END

SFORmat SUbsystem
11-5

lABel

lABel

SFORmat Subsystem
11-6

command/query

The I-ABel mmmand allows you to specify polarity and assrgn channels to
new or existing labels. If the specified label name does not match an
existing label namer a new label wiil be created.

The order of the pod-specification pirameters is signincant. The first one
listed will match the highest-numbered pod assigned to the machine
you're usitg. Each pod specification after that is assigned to the
asxt-highest-numbered pod. This way they match the left-to-rigbt
descending order of the pods you see on the Format display. Not
including enough pod specifications results in the lowest-nu-'bered
pod(s) being assigted a value of zero (all channsls excluded). If you
include more pod specifications than there are pods for that machine, the
extra ones will be ignored. However, an error is reported anytime more
than five pod specifications are listed.

The polarity can be specified at any point after the label name.

Since pods contain 16 chgnnels, the format value for a pod must be
between 0 and 65535 (2to-1). 'When giving the pod assignment in bioary
(base 2), each bit will correspond to a single channel. A u1" in a bit
position means the associated chattnel in that pod is assigned to that pod
and bit. A nOu in a bit position means the associated chat"tel in that pod is
excluded from the label. For example, assigrnin g #8IL1100L100 is
equivalent to entering t'......* * * *..*'t..tt through the front-panel user
interface.

A label can not have a total of more than 32 channels assigned to it.

The LABeI query returns the current specification for the selected (bV
name) label. If the label does not exist, nsthing is returned. The polarity
is always returned as the first parameter. Numbers are always returned in
decimal format.

HP 16s28/16538
Programming Relerence

LABel

LABel

SFORmat Subsystem
11-6

command/query

The LABel command allows you to specify polarity and assign channels to
new or existing labels. If the specified label name does not match an
existing label name, a new label will be created.

The order of the pod-specification parameters is significant. The first one
listed will match the highest-numbered pod assigned to the machine
you're using. Each pod specification after that is assigned to the
next-highest-numbered pod. This way they match the left-to-right
descending order of the pods you see on the Format display. Not
including enough pod specifications results in the lowest-numbered
pod(s) being assigned a value of zero (all channels excluded). If you
include more pod specifications than there are pods for that machine, the
extra ones will be ignored. However, an error is reported anytime more
than five pod specifications are listed.

The polarity can be specified at any point after the label name.

Since pods contain 16 channels, the format value for a pod must be
between 0 and 65535 (216_1). When giving the pod assignment in binary
(base 2), each bit will correspond to a single channel. A "1" in a bit
position means the associated channel in that pod is assigned to that pod
and bit. A "0" in a bit position means the associated channel in that pod is
excluded from the label. For example, assigning #B1111001100 is
equivalent to entering " ****..*•.." through the front-panel user
interface.

A label can not have a total of more than 32 channels assigned to it.

The LABel query returns the current specification for the selected (by
name) label. If the label does not exist, nothing is returned. The polarity
is always returned as the rust parameter. Numbers are always returned in
decimal format.

HP 16528/16538
Programming Reference

l-ABel

COmmand Syntax: :MACHine{l l2}:SFORrnat:LABel <name>[, {<polarity> | <assignment>}]...

where:

<namo> ::= string of uptoGalphanumericcharac.ters
<polarity> ;;= {POSitive I NEGative}

<assignment> :: = format (intsger trom 0 to 65535) tor a pod (pods are assigned in decreasing order)

Examples: 0UTPUT xxX;":IIACHINE2:SF0RI.IAT:LABEL 'STAT" PoSITM, 65535,127,40312'
OUTPUT XXX;":iIACHINE2:SFORHAT:LABEL 'SIG l' , 64, l?, 0, 20, IIEGATM"
OUTPUT XXX;":ttlACHIl{El:SF0R}iAT:LABEL 'ADDR', t{EG, #80011110010101010"

Query Syntax: :MAGHine{1 l2}:SFORmatl-ABel? <name >

Returned Format: [:MACHineil l2i:SFORrnat:l-ABel] <name>,<polarity>[, <assignment>1..,<NL>

Example: 10 DIll strins$[1oo]
20 0UTPUT XXX; " :IIACHINE2 : SF0RMAT: LABEL?'DATA"'
30 EI{TER XXX Str i ng$

40 PRINT String$
50 END

HP 1652B./16s38
Programming Reference

SFORmat Subsystem
11-7

LABel

Command Syntax: :MACHine{112}:SFORmat:LABeI <name> [, {<polarity> 1 <assignment> }] ...

where:

<name>

<polarity>

< assignment>

Examples:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

:: = string of up to 6 alphanumeric characters

:: = {POSitive 1NEGative}

:: = format (integer from 0 to 65535) for a pod (pods are assigned in decreasing order)

OUTPUT XXX;":MACHINE2:SFORMAT:LABEL 'STAT', POSITIVE, 65535,127,40312"
OUTPUT XXX;":MACHINE2:SFORMAT:LABEL 'SIG 1', 64, 12, 0, 20, NEGATIVE"
OUTPUT XXX;":MACHINEl:SFORMAT:LABEL 'ADDR', NEG, 180011110010101010"

:MACHine{1 12}:SFORmat:LABel? < name>

[:MACHine{112}:SFORmat:LABeI] <name>, <polarity> [, <assignment>]... < NL>

10 DIM String$[100]
20 OUTPUT XXX;":MACHINE2:SFORMAT:LABEL? 'DATA'"
30 ENTER xxx String$
40 PRINT String$
50 END

SFORmat Subsystem
11-7

MASTeT

MASTeT

Note l!$

Command Syntax:

where:

< clock_id >
< clock_spec >

command/query

The MASTeT clock command allows you to specify a master clock for a
grven machine. The master clock is used in all clocking modes (Normal,
Mixed, ed Demultiplexed). Each command deals with only one clock
(J,KL,M,N); therefore, a complete clock specification requires five
commands, one for each clock. Edge specifications (RISing, FALLing, or
BOTH) ate ORed. I-evel specifications (LOW or HIGH) are AIrIDed.

At least one clock edge must be specified.

The I\dASTer query returns the clock specification for the specified clock.

:MACHine{1 l2}:SFORmat:MASTer < clock_id >, < clock_spec >

ulKlLlMlN)
{OFF I RlSins I FALUng IBOrH I LOwl HIGH)

HP 16s2Bl16s3B
Programming Reference

Example: ouTpuT XXX; " :MACHINEz : SFoRMAT:MASTER J, RISING"

Ouery Syntax: :MACHine{l l2i:SFORrnarMASTer? <ctock_ld>

Retumed Format: [:MACHine{t l2}:SFORmarMASTer] <ctock_id>,<ctock_sp€c> <NL>

Example: 10 DIr't stringg [1oo]
20 OUTPUT XXX ; " : i,lACHI NEz : SF0RMAT : MASTER?<c lock i d>"
30 ENTER XXX String$
40 PR I NT Str i ng$

50 END

SFORmat Subsystem
11€

MASTer

MASTer

I
Note"

command/query

The MASTer clock command allows you to specify a master clock for a
given machine. The master clock is used in all clocking modes (Normal,
Mixed, and Demultiplexed). Each command deals with only one clock
(J,K,L,M,N); therefore, a complete clock specification requires five
commands, one for each clock. Edge specifications (RISing, FALLing, or
BOTH) are ORed. Level specifications (LOW or HIGH) are ANDed.

At least one clock edge must be specified.

The MASTer query returns the clock specification for the specified clock.

Cummand Syntax: :MACHine{112}:SFORmat:MASTer <clock_id>,<clock_spec>

where:

<clock_id>

<clock_spec>

Example:

Query Syntax:

Returned Format:

Example:

SFORmat SUbsystem
11-8

::= {JIKILIMIN}
:: = {OFF IRISing IFALling IBOTH ILOWIHIGH}

OUTPUT XXX;":MACHINE2:SFORMAT:MASTER J, RISING"

:MACHine{112}:SFORmat:MASTer? <clock_id>

[:MACHine{112}:SFORmat:MASTer] <clock_id >, <clock_spec> < NL>

10 DIM String$[100]
20 OUTPUT XXX;":MACHINE2:SFORMAT:MASTER?<clock_id>"
30 ENTER xxx StringS
40 PRINT StringS
50 END

HP 16528/16538
Programming Reference

REMove

REMove

HP 16s28/16538
Programming Reference

command

The REMove command allows vou to delete all labels or anv one label for
a given machine.

Command Syntax: :MACHine{l l2}:SFORmatREMove {<name> lALr }

where:

< name > :: = string of up to 6 alphanumeric characters

Examples: 0UTPUT xXX; " : MACHI NEz : SFoRMAT : REi'{0VE 'A ' r'!

0UTPUT XXX; " :ilACHINEz : SF0RMAT :REM0VE ALL"

SFORmat Subsystem
1 1-g

REMove

REMove

command

The REMove command allows you to delete all labels or anyone label for
a given machine.

Command Syntax: :MACHine{112}:SFORmat:REMove {<name> IALL}

where:

<name>

Examples:

HP 16528/16538
Programming Reference

:: = string of up to 6 alphanumeric characters

OUTPUT XXX;":MACHINE2:SFORMAT:REMOVE 'A'"
OUTPUT XXX;":MACHINE2:SFORMAT:REMOVE ALL"

SFORmat Subsystem
11-9

SIAVe

Sl-AVe

Note {1i

command/query

The SLAVe clock command allows you to specify a slave clock for a glven
6zghins. The slave clock is only used in the Mixed and Demultiplexed
clocking modes. Each command deals with only one clock (J,KL,M,N);
therefore, a complete clock specification requires five commands, one for
each clock. Edge specifications (RISing; FALLiog, or BOTH) are ORed.
Level specifications (LOW or HIGH) are ANDed.

The slave clock must have at least one edge specified.

HP 16528/16s38
Programming Reference

The SLAVe query returns the clock specification for the specified clock.

Command Syntax :MACHine{l l2i:SFORmatSl-AVe < clock_id >, < clock_spec >

where:

<ctock_id> ::= ulKlLlMlNI
<clock_spec> ::= {OFFIRlSing lFALLing IBOTHILOWIHIcHi

Example: oUTPUT xxx;":ilACHINEZ:SFoRI{AT:SLAVE J, RISING"

Query Syntax : MACHine { 1 | 2} : SFORmat Sl-AVe? < clock_id >

Retumed Format: [:MACHine{t l2}:SFORmatS[AVe] <clock_ld>,<clock_spec> <NL>

b<ample: to DIl'{ String$[1oo]
20 0UTPUT XXX; " : I'IACHI NE2 : SF0Rt'lAT: SLAVE? <c lock id>"
30 ENTER XXX String$
40 PRINT String$
50 END

SFORmat Subsystem
1 1-10

SLAVe

SLAVe

I
Note 1;1

command/query

The SLAVe clock command allows you to specify a slave clock for a given
machine. The slave clock is only used in the Mixed and Demultiplexed
clocking modes. Each command deals with only one clock (J,K,L,M,N);
therefore, a complete clock specification requires five commands, one for
each clock. Edge specifications (RISing, FALLing, or BOTH) are ORed.
Level specifications (LOW or HIGH) are ANDed.

The slave clock must have at least one edge specified.

The SLAVe query returns the clock specification for the specified clock.

Command Syntax: :MACHine{112}:SFORmat:SLAVe <clock_id>,<clock_spec>

where:

<clock_id>

<clock_spec>

Example:

Query Syntax:

Returned Format:

Example:

SFORmat SUbsystem
11-10

::= {JIKILIMIN}
:: = {OFFI RISing IFALUng IBOTH ILOWIHIGH}

OUTPUT XXX;":MACHINE2:SFORMAT:SLAVE J, RISING"

:MACHine{112}:SFORmat:SLAVe? < clock_id >

[:MACHine{112}:SFORmat:SLAVe] <clock_id>,<clock_spec> <NL>

10 DIM String$[100]
20 OUTPUT XXX;":MACHINE2:SFORMAT:SLAVE? <clock_id>"
30 ENTER XXX String$
40 PRINT String$
50 END

HP 16528/16538
Programming Reference

THReshold

THReshold

Example: 10 D I r'{ va I ueg [t oo]

?0 OUTPUT XXX; " :MACHINtI : SFORMAT :THRESH0LD4?"

30 ENTER XXX; Va I ue$

40 PRINT Value$

50 END

HP 16s28/16538
Programming Reference

command/query

The THReshold command allows you to set the voltage threshold for a
grven pod to ECL, TTL, or a specific voltage from -9.9V to + 9.9V in 0.1
volt increments.

Note {$
On the FIP L6528, the pod thresholds of pods L,2 and 3 can be set
independently. The pod thresholds of pods 4 and 5 are slaved together;
therefore, when you set the threshold on either pod 4 or 5, both thresholds
will be cha.ged to the specified value. On the HP 16538, pods 1 and 2 can
be set independently.

The TTlReshold query returns the current threshold for a given pod.

Command Syntax: :MACHine{1 l2}:SFORmatTHReshold<N> {TTLIECLI <value>}

where:

<N> ::- pod number Ir lel3l4l5)
<value > :: = voltage (real number) -9.9 to +9.9

fiL :: = default value of + 1.6V

ECL :: = default value of -1.3V

Example: oUTPUT xxx ; " :I.IACHINEl : sF0RHAT : THRESHoLDI 4. 0"

Query Syntax! :MACHine{1 l2}:SFORmat:THReshold < N > ?

Returned Format: [:MACHine{ 1 lzI:SFORmat:THReshold < N > J <value > < NL>

SFORmat Subsystem
11-11

THReshold

I
Note 1;1

THReshold

command/query

The THReshold command allows you to set the voltage threshold for a
given pod to EeL, 1TL, or a specific voltage from -9.9V to +9.9V in 0.1
volt increments.

On the HP 1652B, the pod thresholds of pods 1, 2 and 3 can be set
independently. The pod thresholds of pods 4 and 5 are slaved together;
therefore, when you set the threshold on either pod 4 or 5, both thresholds
will be changed to the specified value. On the HP 1653B, pods 1 and 2 can
be set independently.

The THReshold query returns the cmrent threshold for a given pod.

Command Syntax: :MACHine{112}:SFORmat:THReshold<N> {TIll ECll <value>}

where:

<N>

<value>

TIL
ECl

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

:: = pod number t112131415}
:: = voltage (real number) -9.9 to +9.9

:: = default value of + 1.6V

:: = default value of -1.3V

OUTPUT XXX;":MACHINEl:SFORMAT:THRESHOLDl 4.0"

:MACHine{1 12}:SFORmat:THReshold < N> ?

[:MACHine{112}:SFORmatTHReshold < N>] <value> < Nl>

10 DIM Value$ [100J
20 OUTPUT XXX;":MACHINEl:SFORMAT:THRESHOLD4?"
30 ENTER XXX;Value$
40 PRINT Value$
50 END

SFORmat Subsystem
11-11

r----------------~

STRace Subsystem 12
lntroduction

HP 16529./16538
Programming Reference

Figure 12-1. STRace Subsystem Syntax Diagram

The STRace subsystem contains the com-ands available for the State
Trace menu in the HP 16528,1538 logic analyzer. The STRace subsystem
commands are:

o BRANch
o FTND
o PREStore
o RANGe
. RESTart
o SEQuence
o STORe
o TAG
o TERM

STRace Subsystem
12-1

bronch-quo I i f ier to-leve l-num

BRANch<N>?

occurrenceproceed-quol ifier

prestore-guolifier

stort-pottern

stop-pottern

STRace SUbsystem 12
Introduction The STRace subsystem contains the commands available for the State

Trace menu in the HP 1652B/53B logic analyzer. The STRace subsystem
commands are:

• BRANch

• FIND

• PREStore

• RANGe

• RESTart

• SEQuence

• STORe

• TAG

• TERM

branch_qua Ii f i er

proceed_quo I if i er

prestore_quo Ii f i er

stop_pattern

Figure 12-1. STRace Subsystem Syntax Diagram

HP 16528/16538
Programming Reference

STRace Subsystem
12-1

RANGe?

RESTcT t spoce

PERLeve I

restort-quol if ier

REST or l?

SEQu en c e s poce num-of-levels i ev-o f -t r i g

SEQuence?

spoce stcrre-quo i i f ierS TOR e <N>

STORecN>?

s poce

stote-tog-guol ifier

i obe | -nomespoce terrn-id potlern

spoce term-id lobe l-nome

Figure 12-L STRace Subsystem Syntax Diagram (continued)

STRace Subsystem
12-2

HP 16529.,/16538
Programming Relerence

res tar t_qua I if i er

num_of_levels

store_qua Ii f i er

Figure 12-1. STRace Subsystem Syntax Diagram (continued)

STRace Subsystem
12-2

HP 16528/16538
Programming Reference

branch_qualifisr : < Eralifier>
to-lev-num : integer Irom 1 to trigo level when < N > is less than or eEtal to the triger level, or

frcm (trigerlqel I 1) to <num_of_loels> when <N> is greaterthanthetrigerlevel
procced_qualilier : <Etalifier>
occurrenoe : numberltom l to 65535
prestone_quaf : <qualifier>
label_name : string of up to 6 olphonumeic characten
startlnttcrn ='{#8{0111 . . . I

#Q{ql1l2l3l4lsl6l7\ . .. I

#H{01 I l2l3l4ls16lTlslelAlBlclDlElr} . . .
I

{0l1l2l3l4lsl6l7l8le} .. . }.
stopJntt€m = "l#B{01/}... I

#Qlol 1l2l3l4lsl6l7I . .. I

#H{01 I 12 l3l4ls 1617 lslelAlB I c lD lE lF} . . . I

l0l 1 l2l3l4ls1617l8le\ . . . |.
rcstart_qualilier = <Etalifier>
num_of_levels = integerftom 2 to Swhen ARM is RUN orftom 2 to 7 otherwise
lev_of_trig : integer Irorn 1 to (number of uisting seEtence levels - 1)
store_qualiligr - < qualifier>
state_tag_qualilier : < qualifier>
tem_id : {AlB lclDlElFlclHlr
patt€m = "1#B{0l1lXI .. . I

#Q101 1 l2l3l4lsl6l7lxI . . .
I

#HI0l l12lsl4lsl6l7lslelAlBlclDlElFlx). . . I

{01 1 l2l3l4ls1617l8le} . . . I,
qualilier : {AtlWtate I NOSTate | <any_term> | (qressionl[{ANDIORI <upression2>])

|

(apression2 [{AND I ORI < qression I > J) }
any_tem = {<or_terml> | <and_terml> | <or_term2> land_tem2l
erpressionl : {<or_terml> IOR <or*terml>]... | <and_terml> IAND <and_terml> J...]
expnession2 = {<or_term2> IOR 1or_term2>]... | <and_tem2> IAND <andJerm2>]...]
or_tennl = {A I

B I C lD llNRange lO(nRangeI
and_teml : {NOTA I NOTB INOTC INOTD llNRange I OWRonge}
or_tein2 : lElFlGlHI
and_tem2 : INOTE I

NOTF lNofc I NOTH\

Figure 12-1. STRace Subsystem Syntax Diagram (continued)

HP 16528/16538
Programming Reference

STRace Subsystem
12-3

branch_qualifier = < qualifier>
to_lev_num = integerfrom I to trigger level when <N> is less than or equal to the trigger level, or

from (trigger level + 1) to < num_of_levels> when < N> is greater than the trigger level
proceed_qualifier = < qualifier>
occurrence = numberfrom I to 65535
prestore_qual = < qualifier>
label_name = string ofup to 6 alphanumeric characters
start-pattern = "{#B{Oll} I

#Q{OI1121314151617} I
#H{OI11213141516171819IA IBICIDIEIF} ... I
{OII1213141516171819} }"

stop-pattern = "{#B{Oll} I
#Q{OI1121314151617} I
#H{O 1112131415161718191A IB IC ID IE IF} · .. I
{OII1213141516171819} ... }"

restart_qualifier = < qualifier>
num_of_levels = integerfrom 2 to 8 when ARM is RUN orfrom 2 to 7otherwise
lev_of_trig = integerfrom 1 to (number ofexisting sequence levels - 1)
store_qualifier = < qualifier>
state_tag_qualifier = < qualifier>
term_id = {A IBICIDIEIFIGIH}
pattern = "{#B{OIIIX} ... I

#Q{OIII21314151617IX} ... I
#H{OI11213141516171819IA IBICIDIEIFIX} ... I
{OII1213141516171819} ... }"

qualifier = {ANYState I NOSTate I <any_tenn> I (expressionI[{ANDIOR} <expression2>J) I
(expression2[{ANDIOR} < expressionI > J) }

any_term = {< or_tennI > I < and_tenn I > I < or_tenn2 > land_tenn2}
expression! = {< or_tennI > [OR < or_tennI > J I < and_tennl > [AND < and_tennI > J }
expression2 = {< or_tenn2 > [OR < or_tenn2 > J I < and_tenn2 > [AND < and_tenn2 > J }
or_term! = {A IB Ic ID IINRange IOUTRange}
and_tenn! = {NOTA INOTB INOTCINOTD IINRange IOUTRange}
or_term2 = {EIFIGIH}
and_term2 = {NOTEINOTFINOTGINOTH}

Figure 12-1. STRace Subsystem Syntax Diagram (continued)

HP 16528/16538
Programming Reference

STRace Subsystem
12-3

STRace

STRace

STRace Subsystem
124

selector

The STRace (State Trace) selector is used as a part of a compound
header to access the settings found in the State Trace menu. It always

follows the MACHine selector because it selects a branch directly below
the MACHine level in the command tree.

command syntax: :MAGHine{1 l2i:STRace

HP 16s28/16s3B
Programming Reference

STRace

STRace

Command Syntax:

Example:

STRace Subsystem
12-4

selector

The STRace (State Trace) selector is used as a part of a compound
header to access the settings found in the State Trace menu. It always
follows the MACHine selector because it selects a branch directly below
the MACHine level in the command tree.

:MACHine{112}:STRace

OUTPUT XXX;":MACHINE1:STRACE:TAG TIME"

HP 16528/16538
Programming Reference

BRANch

BRANch

Note

Note {$

HP 1652B.,/16s38
Programming Reference

command/query

The BRANch command defines the branch qualifier for a given sequence
level. When this branch qualifier is matche4 it will cause the sequencer
to jump to the specified sequence level.

"RESTART PERLE\IELU must have been invoked for this command to
have an effect (see RESTart command).

The terms used by the branch eualifier (A through H) are defined by the
TERM command. The psaning of INRango and OUTRattge is
determined by the RAIIGe commattd.

Within the limitations shown by the slmtax definitions, complex
e pressions may be formed using the AITID and OR operators.
F.xpressions are limited to what you could manually enter through the
front panel. Regarding parentheses, the syrtax defrnitions on the next
page show only the required ones. Additional parentheses are allowed as
long as the msaning of the expression is not sfuanged. For example, the
following two statements are both correct and have the same msaning.
Notice that the conventional rules for precedence are not followed.

OUTPUT XXX;":l'lACHIl{El:STRACE:BRANCH1 (C 0R D AND F 0R G), 1"

0UTPUT XXX;":MACHIiIE1:STRACE:BRANCHI ((C 0R D) AND (F 0R G)), 1"

Figure L2-2 shows a complex e4pression as seen on the Format display.

$1il1shing across the trigger level is not allowed. Therefore, the values for
< N > and < to_level_num > must both be either on or before the trigger
levef or they must both be after the trigger level . The trigger level is
determined through the SEQuence comurand.

The BRANch query returns the current branch qualifier specification for
a given sequence level.

STRace Subsystem
12-5

BRANch

I
Note'll

I
Note'll

HP 16528/16538
Programming Reference

BRANch

command/query

The BRANch command defines the branch qualifier for a given sequence
level. When this branch qualifier is matched, it will cause the sequencer
to jump to the specified sequence level.

"RESTART PERLEVEL" must have been invoked for this command to
have an effect (see RESTart command).

The terms used by the branch qualifier (A through H) are defmed by the
TERM command. The meaning of INRange and OUTRange is
determined by the RANGe command.

Within the limitations shown by the syntax definitions, complex
expressions may be formed using the AND and OR operators.
Expressions are limited to what you could manually enter through the
front panel. Regarding parentheses, the syntax definitions on the next
page show only the required ones. Additional parentheses are allowed as
long as the meaning of the expression is not changed. For example, the
following two statements are both correct and have the same meaning.
Notice that the conventional rules for precedence are not followed.

OUTPUT XXX;":MACHINE1:STRACE:BRANCHI (C OR DAND F OR G), 1"
OUTPUT XXX;":MACHINE1:STRACE:BRANCHI ((C OR D) AND (F OR G)), 1"

Figure 12-2 shows a complex expression as seen on the Format display.

Branching across the trigger level is not allowed. Therefore, the values for
< N> and < to_level_num> must both be either on or before the trigger
leve~ or they must both be after the trigger level. The trigger level is
determined through the SEQuence command.

The BRANch query returns the current branch qualifier specification for
a given sequence level.

STRace Subsystem
12-5

BRANch

Command Syntax: :MACHine{l l2}:STRace:BMNch < N > < branch_qualifier>, <to_level_number>

where:

<N> ::= an integertrom 1io <number_of_levels>
<to_level_number> ::= intsgerlrom ttotriggerlevol,when <N> islossthanoroqual tothetriggorlswl

or lrom (trigger lwel + 1) to < number_of_levels >, when < N > is greater than the

trigger level

< number_of_levels > :: = integer from 2 to the numbgr of existing sequence levels (maximum 8)

<branch_qualifier> ;;= {ANYState I NOSTate | <any_term> |

(<expressionl > [{AND I OR} <expression2> l) |

(<oxpression2> I{ANDIOR} <expressionl >]) }
<any_term> ':= {<or tgrml> | <and_terml> | <or_torm2> | <and_term2>}

<expressionl> ::= {<or_torml>[OR <or_terml>1...| <and_tsrml>IAND <and-term1 >]...]
<expression2> ;;= {<or_torm2>[OR <or_term2>]... | <and_torm2>IAND <and_term2>1..,]

< or term 1 > :: = {Al B lC I D llNRange lOUTRange}
<and_terml > :: = {NOTAI NOTB I NOTC I NOTD I lNRange I OUTRange}

<or_term2> ::= {ElFlGlH}
<and t€rm2> ;;= {NOTEINOTFINOTGINOTH}

Examples: oUTPUT xxx;":tlACHIt{El:STRACE:BRANCHI ANvSTATE. 3"
OUTPUT XXX ; " : IIACHINEZ : STRACE : BRAIICHZ A, 7"

0UTPUT XXX;":iIACHINEI:STRACE:BRAI{CH3 ((A 0R B) 0R tlOTG), 1"

Ouery Syntax :MACHine{l l2}:STRace:BRANch <N>?

Retufned Format: [:MACHineil l2]:STRace:BMNch < N>]<branch_qualitier>, <to_lev€l_num > < NL>

Example: 1o DIt-t strins$ [100]
20 0UTPUT XXX; " : I'IACHI NE1 : STRACE : BRANCH3?"

30 ENTER XXX ; Str i ng$

40 PRINT String$
50 END

STRace Subsystem
12-6

HP 16528/16538
Programming Reference

BRANch

Command Syntax: :MACHine{112}:STRace:BRANch<N> <branch_qualifier>,<to_level_number>

where:

<N>

< to_level_number>

< number_of_levels>

< branch_qualifier>

<any_term>

< expression1>

< expression2 >

< or_term 1 >

< and_term 1 >

< or_term2 >

< and_term2 >

Examples:

Query Syntax

Returned Format:

Example:

STRace Subsystem
12-6

::= an integer from 1 to <number_of_levels>

:: = integer from 1 to trigger level, when < N > is less than or equal to the trigger level

or from (trigger level + 1) to < number_of_levels> , when < N> is greater than the

trigger level

:: = integer from 2 to the number of existing sequence levels (maximum 8)

:: = {ANYState 1NOSTate I <any_term> I

(< expression1> [{AND lOR} < expression2 >]) 1

(< expression2 > [{AND lOR} < expression1>]) }

:: = {<or_term1 > I < and_term1> I <or_term2> I <and_term2>}

:: = {<or_term1 > [OR < or_term1>]... 1 < and_term1 > [AND < and_term1 >]".}

:: = {<or_term2> [OR < or_term2 >]". I <and_term2> [AND < and_term2 >]".}

:: = {AI BI CI DIINRange IOUTRange}

:: = {NOTAINOTB INOTC 1NOTD IINRange 1OUTRange}

::= {EIFIGIH}

:: = {NOTE INOTF 1NOTG 1NOTH}

OUTPUT XXX;":MACHINE1:STRACE:BRANCHl ANYSTATE, 3"
OUTPUT XXX;":MACHINE2:STRACE:BRANCH2 A, 7"
OUTPUT XXX;":MACHINE1:STRACE:BRANCH3 ((A OR B) OR NOTG), 1"

:MACHine{112}:STRace:BRANch<N>?

[:MACHine{112}:STRace:BRANch < N> j<branch_qualifier>, <to_level_num > < NL>

10 DIM String$[100]
20 OUTPUT XXX;":MACHINE1:STRACE:BRANCH3?"
30 ENTER XXX;String$
40 PRINT String$
50 END

HP 16528/16538
Programming Reference

BRANch

lnffil- stctl rr.cr Srrclftcctton
rroce nodr f- ,Sfffii"-l

ful I

c

b

c

6

rongs

te
tl
rg
th

ourtItltr sptclflc.tton @

LaDr I
Bcs r

Note lI$

HP 16528/16538
Programming Reference

iigure l2-2. Complex qualifier

Figure L2-2 is a front panel representation of the complex qualifier
(a Or b) And (+e And th). The following example would be used to
speci$ this complex qualifier.

0UTPUT XXX;":I{ACHINEI:STRACE:BRAI{CHI ((A 0R B) AND (NOTE AND NOTH)), ?"

Terms A through D and RANGE must be grouped together and terms
E througb H must be grouped together. ln the first level, terms from
one group may not be mixed with terms from the other. For example, the
elpression ((A OR INRAI{GE) AtlD (C OR H)) is not allowed because
the term C cannot be specified in the E thtough H group.

Keep i1 mind that, at the fust level the operator you use determines
which terms are available. When AI{D is chosen, only the NOT terms
may be used. Either AI{D or OR may be used at the second level to joio
the two groups together. It is acceptable for a group to consist of a single
term. Thus, an expression like (B AhID G) is lrgul since the two
operands are both simple terms from separate groups.

STRace Subsystem
12-7

I
Note"

HP 16528/16538
Programming Reference

BRANch

IMACHINE 1 1- stet. Tree. S••clf ie.lIon

Trece model Single t

Lebll
8esl

)()()(X

~
I)()()()(I
I)(x)()(I

.=igure 12-2. Complex qualifier

Figure 12-2 is a front panel representation of the complex qualifier
(a Or b) And (~e And ~h). The following example would be used to
specify this complex qualifier.

OUTPUT XXX;":MACHINEl:STRACE:BRANCHl ((A OR B) AND (NOTE AND NOTH)), 2"

Terms A through D and RANGE must be grouped together and terms
E through H must be grouped together. In the fIrst level, terms from
one group may not be mixed with terms from the other. For example, the
expression «A OR INRANGE) AND (C OR H» is not allowed because
the term C cannot be specified in the E through H group.

Keep in mind that, at the first leve~ the operator you use determines
which terms are available. When AND is chosen, only the NOT terms
may be used. Either AND or OR may be used at the second level to join
the two groups together. It is acceptable for a group to consist of a single
term. Thus, an expression like (B AND G) is legal, since the two
operands are both simple terms from separate groups.

STRace Subsystem
12-7

FIND

FIND

where:

<N>
< o@urrenog >

< proosed_qualifier >

< any_term >

< expression 1 >

< oxpression2 >

<or terml >
< and_terml >

< or term2>
< and_term2>

STRace Subsystem
12-8

command/query

.T,:I#fr ffi r,f#ff :"T*"#,ffi ill::L*";;:T#
sequenoe level. When this proceed qualifier is matched the specified
number of times, the sequencer will proceed to the next sequence level.
The state that causes the sequencer to switch levels is automatically stored
in memorywhether it matches the associated store qualifier or not. In the
sequense level where the trigger is specified the FIND comnand
speci.fies the trigger qualifier (see SEQuence co--and).

The terms A througb H are defined by the TERM commend. The
meaning of INR^nge and OUTRange is determined by the RANGe

ff ffi *"H#:nT#".T,:il:;T:Jilryl,tfr:*ffi ru",.
below show only the required ones. Additional parentheses are allowed

;.j|;,H;;*ffianing
of the e:rpression Ir od sftansed. see Frgure 6-2 for

The FIND query returns the current proceed qualifier specification for a
given sequence level.

GOmmand Syntrax: :MAGHine{1 l2}:STRace:F|ND c N > < proceed-qualifier >, < occurence >

:: = integer from 1 to the number of existing ssquenoe levels (matimum 8)

:: = integer from 1 to 65535

::= { AtlYstate I NOSTate | <any_term> |

(< expressionl > [{AtlD I ORi < expression2 >]) |

(< expression2 t [{At,lD IOR} < expressionl > J) }
::= {<or_terml> | <and_tsrml > | <orjermz> | <and_termz>}

::= {<or_terml >IOR <or terml >J... | <and_terml >[AND <and_terml >J...]

:: = { <or term2> [OR <or_termz>J... | <and_termz> [AND <and_tetmzt]...]
:: = {Al BIC I Dl lNRange I OUTHange}

:: = {NOTAI NOTB INOTC INOTD llNRange lOUTRange}
:: = {E lFlG lH}
:: = {NOTE INOTFINOTG INOTH}

HP 16528/16s38
Programming Reference

FIND

FIND command/query

The FIND command dermes the proceed qualifier for a given sequence
level. The qualifier tells the state analyzer when to proceed to the next
sequence level. When this proceed qualifier is matched the specified
number of times, the sequencer will proceed to the next sequence level.
The state that causes the sequencer to switch levels is automatically stored
in memory whether it matches the associated store qualifier or not. In the
sequence level where the trigger is specified, the FIND command
specifies the trigger qualifier (see SEQuence command).

The terms A through H are defined by the TERM command. The
meaning of INRange and OUTRange is determined by the RANGe
command. Expressions are limited to what you could manually enter
through the Format menu. Regarding parentheses, the syntax defmitions
below show only the required ones. Additional parentheses are allowed
as long as the meaning of the expression is not changed. See figure 6-2 for
a detailed example.

The FIND query returns the current proceed qualifier specification for a
given sequence level.

Command Syntax: :MACHine{112}:STRace:FIND<N> <proceed_qualifier>,<occurrence>

where:

<N>

< occurrence >

< proceed_qualifier>

<any_term>

< expression1>

< expression2 >

< or_term 1>

< and_term1>

<or_term2>

<and_term2>

STRace Subsystem
12-8

:: = integer from 1 to the number of existing sequence levels (maximum 8)

:: = integer from 1 to 65535

:: = {ANYState I NOSTate I <any_term> I
(< expression1> [{AND lOR} < expression2 >]) I
(< expression2 > [{AND lOR} < expression1>]) }

:: = {<or_term1 > I < and_term1> I < or_term2 > I <and_term2>}

:: = {<or_term1 > [OR < or_term1>] I < and_term1> [AND < and_term1>]... }

:: = {<or_term2> [OR <or_term2>] I < and_term2 > [AND <and_term2> l ..}
:: = {AI BICI DIINRange IOUTRange}

:: = {NOTA INOTS INOTC INOTD IINRange IOUTRange}

::= {EIFIGIH}

::= {NOTEINOTFINOTGINOTH}

HP 16528/16538
Programming Reference

FIND

Examples: 0UTPUT xxX;":llACHIl{El: STRACE: Ftt{01 AI{YSTATE, 1"
0UTPUT XXX;":llACHlt{Ei:STRACE:FIt{02 A, 512"

OUTPUT XXX;":l,lACHINEl:STRACE:FIND3 ((tl0TA At{D ll0TB) 0R C), l"

Query Syntax: :MACHine{t l2}:STRace:FlNDt?

ReturnedFormat: [:MACHino{112}:STRace:FIND<N>] <proceed_qualifier>,<occurrence><NL>

Example: to DIt'l String$ [1oo]
20 0UTPUT XXX; " :MACHINEl : STRACE :FIND<N>?"

30 ENTER XXX; Str i ng$

40 PR I NT Str i ng$

50 END

HP 16528/16s38
Programming Reference

STRace Subsystem
12-g

Examples:

Query Syntax:

Returned Format:

Example:

HP 16528/1'6538
Programming Reference

FIND

OUTPUT XXX;":MACHINEl:STRACE:FINDl ANYSTATE, 1"
OUTPUT XXX;":MACHINEl:STRACE:FIND2 A, 512"
OUTPUT XXX;":MACHINEl:STRACE:FIND3 ((NOTA AND NOTS) OR G), 1"

:MACHine{112}:STRace:FIND4?

[:MACHine{112}:STRace:FIND< N>] <proceed_qualifier>, <occurrence> < NL>

10 DIM String$[100]
20 OUTPUT XXX;":MACHINEl:STRACE:FIND<N>?"
30 ENTER XXX;String$
40 PRINT String$
50 END

STRace Subsystem
12-9

PREStore

PREStore

STRace Subsystem
12-10

command/query

lh:ffiffi ffi Hilff tr"i:JJ:::Tf 3:ffi 3tfr 1"31;litk
fiffiHJ.T"#ff :gHffi.T,Tffi b:Tffi ::
Expressions are linited to what you could manually enter througfi the
Format menu. Regarding parentheses, the sptax definitions below show

f"ffi TIH:f :k*f;;9,"H?i;ihesesarea'owedasrongasthe

A detailed exanple is provided nfuueI2-2.

Ihe PREStore query returns the current prestore specification.

Command Syntax: :MACHine{112}:STRace:PREStore {OFF | <prestore_qualifier>}

where:

<prestore_qualifier> ::= tANYState I NOSTate | <any_term> |

(<expressionl > [{AND IOR} <expression2>]) |

(<€xptession2> [{ANDIOR} <expressionl >]) }
<eny_term> s;= {<or_terml> l<and_terml> | <or_term2> l<and_ierm2>}

<expressionl > ::= {<or_terml >[OR <or_terml >1.,. | <end_terml >[AND <and_term1 >]...]
<expr€$ion2> ;; = { <or_torm2> IOR <or_term2>1.,. | <and_term2>[AND <and_tem2>]...]

<or_termt > ::= {AlBlGlDllNRangelOUTRange}
<and_torml > :: = {NOTAI NOTB I NOTC I NOTD I lNRange I OUTRange}

<or_term2> ::= {ElFlGlH}
<and term2> ;;= {NOTEINOTFINOTGINOTH}

HP 16529.116538
Programming Relerence

PREStore

PREStore command/query

The PREStore command turns the prestore feature on and off. It also
defmes the qualifier required to prestore only selected states. The terms
A through H are defined by the TERM command. The meaning of
INRange and OUTRange is determined by the RANGe command.

Expressions are limited to what you could manually enter through the
Format menu. Regarding parentheses, the syntax defInitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed.

A detailed example is provided in figure 12-2.

The PREStore query returns the current prestore specification.

Command Syntax: :MACHine{112}:STRace:PREStore {OFF I <prestore_qualifier>}

where:

< prestore_qualifier>

<any_term>

< expression1>

< expression2 >

< or_term1>

< and_term1>

< or_term2 >

<and_term2>

STRace Subsystem
12-10

:: = {ANYState I NOSTate I <any_term> I

(< expression 1> [{AND lOR} < expression2 >]) I

(< expression2 > [{AND lOR} < expression 1>]) }

:: = {<or_term1 > I < and_term1> I <or_term2> I <and_term2>}

:: = {<or_term1 > [OR < or_term1>] I < and_term1> [AND < and_term 1>] }

:: = {<or_term2> [OR <or_term2>] I < and_term2 > [AND <and_term2>] }

::= {AIBICIDIINRangeIOUTRange}

:: = {NOTA INOTB INOTC INOTO IINRange IOUTRange}

::= {EIFIGIH}

::= {NOTEINOTFINOTGINOTH}

HP 16528/16538
Programming Reference

PREStore

Examples: 0UTPUT xXX;":MACHlilEl:STRACE:PRESTORE oFF'

OUTPUT XXX;":MACHII{E1 :STRACE:PRESTORE AI{YSTATE"

0UTPUT XXX;":l,lACHItlEl :STRACE:PRESTORE (E)"
0UTPUT XXX;":i{ACHINEI:STRACE:PREST0RE (A 0R B 0R D 0R F 0R H)"

Query Syntax: :MACHina{1 l2}:STRace:PREStore?

ReturnedFormat: [:MACHine{112}:STRace:PREStore] {OFFI <prestore_qualifier>}<NL>

Example: 10 DIt,t str i ns$ [1oo]
20 OUTPUT XXX; ":l,lACHINEl: STRACE: PRESTORI ?"

30 ENTER XXX; Str i ng$

40 PRINT String$
50 Er{D

HP 1652B/16s38
Programming Reference

STRace Subsystem
12-11

Examples:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

PREStore

OUTPUT XXX;":MACHINE1:STRACE:PRESTORE OFF"
OUTPUT XXX;":MACHINE1:STRACE:PRESTORE ANYSTATE"
OUTPUT XXX;":MACHINE1:STRACE:PRESTORE (E)"
OUTPUT XXX;":MACHINE1:STRACE:PRESTORE (A OR B OR DOR F OR H)"

:MACHine{112}:STRace:PREStore?

[:MACHine{112}:STRace:PREStore] {OFFI < prestore_qualifier> } < NL>

10 DIM String$[100]
20 OUTPUT XXX;":MACHINE1:STRACE:PRESTORE?"
30 ENTER XXX;String$
40 PRINT String$
50 END

STRace Subsystem
12-11

RANGe

RANGe

Note
'I$

Note {$

STRace Subsystem
12-12

command/query

The RANGe command allows you to specify a rflnge recogfrizer term in
the specified machine. Since a range can only be defined across one label
ird, since a label must contain 32 ol less bits, the value of the start pattern
or stop pattern will be betwe eo (fz)-L and 0.

Since a label can only be defined across a maxmum of two pods, a r4ngo

term is only available across a sing{e label; therefore, the end points of the
range cannot be split between labels.

When these values are expressed in binary, they represent the bit values
for the label at one of the rango rcqgntzers' end points. Don't cares are
not allowed in the end point pattern specifications. Since only one rango
rec,ogu,zer exists, it is always used by the first state 6sshine defined.

The RAIIGe query returns the range rccognizer end point specifications
for the range.

When two state analyznrs :ue on, the RANGe term is not available in the
second state analyznr assigned and there are only 4 pattern re@gnizers
per analyzer.

HP 1652B./16s38
Programming Reference

RANGe

RANGe

I

Note '"

I
Note e

STRace Subsystem
12-12

command/query

The RANGe command allows you to specify a range recognizer term in
the specified machine. Since a range can only be defmed across one label
and, since a label must contain 32 or less bits, the value of the start pattern
or stop pattern will be between (232)_1 and o.

Since a label can only be defmed across a maximum of two pods, a range
term is only available across a single label; therefore, the end points of the
range cannot be split between labels.

When these values are expressed in binary, they represent the bit values
for the label at one of the range recognizers' end points. Don't cares are
not allowed in the end point pattern specifications. Since only one range
recognizer exists, it is always used by the frrst state machine defmed.

The RANGe query returns the range recognizer end point specifications
for the range.

When two state analyzers are on, the RANGe term is not available in the
second state analyzer assigned and there are only 4 pattern recognizers
per analyzer.

HP 1652~/1653B

Programming Reference

RANGe

GOmmandSyntax: :MAGHine{l l2}:STFace:MNGE <label_namo>,<startJoattern>,<stopJcattern>

where:

< labsl_name > :: = gtring of up to 6 alphanumgric characters
<startJrattern> ::='i#e{Olt}... I

#o{0l1 l2l314lsl6l7}... I

#H{01 1 l2l3l4lsl6lTlslslAlBlclDlElFi . . . I

{01 I l2l3l4l5l6l7l8le} . . . }.
<stoploattern> ::= "{#A{Olt}... I

#o{011 l2l3l41516l7}... I

#H{01 1 l2l3l4lsl6lTlslelAlBlclDlElFi . . . I

{01 I l2l3l4l5l6l7l8lsi . . . }"

Examples: 0UTPUT xxx;":l,tACHIl{El:sTRACE:RANGE 'DATA'. ',t27', , ',255' -
0UTPUT XXX;":MACHINEI:STRACE:RAllGE'ABC','#800001111','#HCF' "

Query Syntax: :MACHine{1 l2}:STRace:MNGe?

Returned Format: [:MACHine{1 l2i:STRAce:MNGe]
< label_name > , < startJratt€rn > , < stopJoattem > < NL >

Ercample: to DIt't Stringg [1oo]
20 OUTPUT XXX; " : MACHINEI : STRACE : RANGE?"

30 EI{TER XXX;String$
40 PR I NT Str i ng$

50 Et{D

HP 1652B.116s38
Programming Relerence

STRace Subsystem
12-13

RANGe

Command Syntax: :MACHine{112}:STRace:RANGE <label_name>, <startJ>attern >, <stop-pattern >

where:

< label_name>

< startJ>attern >

< stopJ>attern >

Examples:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

:: = string of up to 6 alphanumeric characters

::= "{#B{OI1}···1

#Q{OI1121314151617} ... 1

#H{OI112131415/6171819IA/BICID/EIF} ... /

{O/1/213/415/617/819} ... }"

::= "{#B{OI1}···1

#Q{OI1/21314151617} ... 1

#H{OI11213141516171819IAIBICIDIEIF} ... I
{O/112131415161 7 18/9} ... }"

OUTPUT XXX;":MACHINE1:STRACE:RANGE 'DATA', '127', '255' "
OUTPUT XXX;":MACHINE1:STRACE:RANGE 'ABC', '#B00001111', "HCF' "

:MACHine{112}:STRace:RANGe?

[:MACHine{112}:STRAce:RANGe]

< label_name> ,< start-pattern> , < stopJ>attern > < NL>

10 DIM String$[100]
20 OUTPUT XXX;":MACHINE1:STRACE:RANGE?"
30 ENTER XXX;String$
40 PRINT String$
50 END

STRace Subsystem
12-13

RESTart

RESTart

STRace Subsystem
12-14

command/query

The RESTart command selects the type of restart to be enabled dudng
the trace sequenoe. It also defines the global restart qualifier that restarts
the sequence in global restart mode. The qualifier may be s 5ingls term or
a complex e:rpression. The terms A through H are defined by the TERM
command. The meaning of INRange and OUTRange is determined by
the RANGc command.

Expressions are limited to what you could manually enter througfi the
Format menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are allowed as long as the
msaning of the expression is not changed.

A detailed example is provided'lmfuurel2-Z.

The RESTart query returns the current restart specification.

Command Syntax: :MAGHine{112}:STRace:RESTart {OFF I PERLevel | <restart_qualifier>}

where:

<restart_qualifi€r> ::= {ANYState lNOSTate | <any_term> |

(< expressionl > [{AND IOR} < expression2 > J)

(< expression2> [{AND I OR} <expressionl > J)

<any_term> ::= {<or terml > | <and_terml> | <or tetmz> < and_term2 >)
<exprossionl> ::= {<or terml>[OR <or terml>]...| <and_torm1 >IAND <end_terml>1...]
<expression2> ::= {<or_term2>[OR <or_l€rm2>].,, | <and_term2>[AlllD <and_term2>]...]

<or_terml > ::= iAlBlClDllNRangelOUTRange)
<and_term1 > :: = {NOTAI NOTB I NOTC I NOTDI lNRange I OUTRange}

<or_torm2> ::= {ElFlGlH}
<and_term2> ::= {NOTEINOTFINOTGINOTH}

ExampleS: OUTPUT XXX;":ttACHINEl:STRACE:RESTART oFF"

0UTPUT XXX: ":i{ACHItlEl :STRACE :RESTART PERLEVEL"

OUTPUT XXX; " :l,lACHItlEl : STRACE :RESTART (N0TA AllD N0TB AND tiIRANGE) "
0UTPUT XXX;":I'{ACHINEl:STRACE:RESTART (8 0R (i{OTE At{D I{OTF))"

HP 16528/16538
Programming Reference

RESTart

RESTart command/query

The RESTart command selects the type of restart to be enabled during
the trace sequence. It also defmes the global restart qualifier that restarts
the sequence in global restart mode. The qualifier may be a single term or
a complex expression. The terms A through H are defmed by the TERM
command. The meaning of INRange and OUTRange is determined by
the RANGe command.

Expressions are limited to what you could manually enter through the
Format menu. Regarding parentheses, the syntax defInitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed.

A detailed example is provided in figure 12-2.

The RESTart query returns the current restart specification.

Command Syntax: :MACHine{112}:STRace:RESTart {OFF I PERLevel I <restart_qualifier>}

where:

< restart_qualifier>

<any_term>

< expression 1>

< expression2 >

< or_term1>

< and_term1>

<or_term2>

<and_term2>

Examples:

STRace Subsystem
12-14

:: = {ANYState I NOSTate I < any_term> I

(< expression1> [{AND lOR} < expression2 >]) I

(< expression2 > [{AND lOR} < expression1>]) }

:: = {<or_term1 > I < and_term1> I <or_term2> I <and_term2>}

:: = {<or_term1 > [OR < or_term1>] I < and_term1> [AND < and_term1>] }

:: = {<or_term2> [OR <or_term2>] I <and_term2> [AND < and_term2 >] }

:: = {AI BICI DIINRange IOUTRange}

:: = {NOTA INOTB INOTC INOTD IINRange IOUTRange}

::= {E!FIGIH}

::= {NOTEINOTFINOTGINOTH}

OUTPUT XXX;":MACHINE1:STRACE:RESTART OFF"
OUTPUT XXX;":MACHINE1:STRACE:RESTART PERLEVEL"
OUTPUT XXX;":MACHINE1:STRACE:RESTART (NOTA AND NOTB AND INRANGE)"
OUTPUT XXX;":MACHINE1:STRACE:RESTART (B OR (NOTE AND NOTF))"

HP 16528/16538
Programming Reference

RESTart

Query Syntax: :MACHine{l l2}:STRace:RESTaf?

RetUmed FOrmat: [:MACHine{112}:STRace:RESTartl {OFF I PERtevel | <resrarr_qualifier>}<NL>

Fxample: to DIt',t Stringg [too]
20 0UTPUT XXX; " : MACHI NEl : STRACE : RESTART?"

30 ENTTR XXX; Str i ng$

40 PRINT String$
50 END

HP 16528./16538
Programming Relerence

STRace Subsystem
12-15

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

RESTart

:MACHine{112}:STRace:RESTart?

[:MACHine{112}:STRace:RESTart] {OFF I PERLevel I < restart_qualifier> } < NL>

10 DIM String$[100]
20 OUTPUT XXX;":MACHINE1:STRACE:RESTART?"
30 ENTER XXX;String$
40 PRINT StringS
50 END

STRace Subsystem
12-15

SEQuence

SEQuence command/query

The SEQuence command redefnes the state analyzet trace sequence.
First, it deletes the current trace sequence. Then it inserts the number of
levels specified with default ssfring<, and assiei's the trigger to be at a
specified sequence level. The nunber of levels can be between 2 and 8
when the analpr is armed by the RUN key. When armed by the BNC or
the other machine, a level is used by the arm in; therefore, only seven
levels are available in the sequence.

The SEQuence query returns the current sequence specification.

GOmmand Syntax :MAGHine{1 l2i:STRace:SEQuenco <number_of_levels>,<level_of trigger>

where:

< number_ot_levels > :: = integer lrom 2 to 8 whgn ARM is RUN or from 2 to 7 othemise
< level_of trigger > :: = integer from 1 to (numbgr of existing sequenoo levels - 1)

Example: oUTPUT xXX; " : l'lAcHI NEl : STRACT : SEQUENCE 4 ,3"

Query Syntax: :MACHine{1 l2}:STRace:SEQuenoe?

Returned Format: [:MACHine{1 l2}:STRace:SEQuencs]
< number of fevels) , (level_of trigger > < NL >

Example: to DIM Strinsg [1oo]
20 0UTPUT XXX; ": MACHII{81 : STRACE : SEQUENCE?"

30 ENTTR XXX; String$
40 PRINT String$
50 END

STRace Subsystem
12-16

HP 16528./16538
Programming Reference

SEQuence

SEQuence command/query

The SEQuence command redefines the state analyzer trace sequence.
First, it deletes the current trace sequence. Then it inserts the number of
levels specified, with default settings, and assigns the trigger to be at a
specified sequence level. The number of levels can be between 2 and 8
when the analyzer is armed by the RUN key. When armed by the BNC or
the other machine, a level is used by the arm in; therefore, only seven
levels are available in the sequence.

The SEQuence query returns the current sequence specification.

Command Syntax: :MACHine{112}:STRace:SEQuence < number_of_levels> ,< level_of_trigger>

where:

<number_ofJevels>

< level_of_trigger>

Example:

Query Syntax:

Returned Format:

Example:

STRace SUbsystem
12-16

:: = integer from 2 to 8 when ARM is RUN or from 2 to 7 otherwise

:: = integer from 1 to (number of existing sequence levels - 1)

OUTPUT XXX;":MACHINEl:STRACE:SEQUENCE 4,3"

:MACHine{112}:STRace:SEQuence?

[:MACHine{112}:STRace:SEQuence]

< number_of_levels> ,< level_of_trigger> < NL>

10 DIM String$[100]
20 OUTPUT XXX;":MACHINEl:STRACE:SEQUENCE?"
30 ENTER XXX;String$
40 PRINT String$
50 END

HP 16528/16538
Programming Reference

STORe

STORe

Command Syntax:

where:

<N>
< store_qualifier >

< any_term >
< oxpression 1 >

< expression2 >

< or_term 1 >

< and_terml >
<oilerm2>

< and_term2>

command/query

The STORe command defines the store qualifier for a given sequence
level. Any data 6stghing the STORe qualifier wiil actually be stored in
memory as part of the clurent trace data. The qualifier may be a single
term or a complex e4pression. The terms A through H are defined by the
TERM command. The meaning of INRange and OUTRange is
determined by the RANGe command.

E4pressions are limited to what you could manually enter ttuough fte
Format menu. Regarding parentheses, the sptax definitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed.

A detailed example is provided in figrrre L2-2.

The STORe query returns the cturent store qualifier specification for a
given sequence level < N > .

:MACHine{1 l2}:STRace:STORe < N > < store_qualifier>

:: = an integer from 1 to the number of existing sequenoe levels (morimum 8)

::= { ANYState I NOSTate | <any_term>
|

(< expression 1 > [{AND IOR} < oxprsssion2 > J) |

(<expression2 t [{At',lD I OR} <expressionl >]) }
::= {<or terml> | <and_terml> | <orjerm2> | <and_term2>}
::= {<or terml >[OR <or terml >J... | <and_term1 >[AND <and_term1 >J...]

if = { <or_term2> [OR <or term2> J... | <and_term2t [AND <and_term?>]...]
:: = {Al B I C I D I lNRange I OUTRange}

:: : {NOTAI NOTB INOTC I NOTD llNRange lOUTRange}
::= {ElFlGlH}
ri = {NOTE I NOTF INOTG I NOTH}

STRace Subsystem
72-17

HP 1652F.116538
Programming Reference

STORe

STORe

command/query

The STORe command defmes the store qualifier for a given sequence
level. Any data matching the STORe qualifier will actually be stored in
memory as part of the current trace data. The qualifier may be a single
term or a complex expression. The terms A through H are defmed by the
TERM command. The meaning of INRange and OUTRange is
determined by the RANGe command.

Expressions are limited to what you could manually enter through the
Format menu. Regarding parentheses, the syntax defmitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed.

A detailed example is provided in figure 12-2.

The STORe query returns the current store qualifier specification for a
given sequence level < N> .

Command Syntax: :MACHine{112}:STRace:STORe<N> <store_qualifier>

where:

<N>

< store_qualifier>

<any_term>

< expression1>

< expression2 >

< or_term1>

< and_term1>

< or_term2 >

< and_term2 >

HP 16528/16538
Programming Reference

:: = an integer from 1 to the number of existing sequence levels (maximum 8)

:: = {ANYState I NOSTate I <any_term> I

«expression1 > [{AND lOR} <expression2>]) I

(< expression2 > [{AND lOR} < expression1>]) }

:: = {<or_term1 > I < and_term1> I <or_term2> I < and_term2 > }

:: = {<or_term1 > [OR < or_term1> l I < and_term1> [AND < and_term1> l· ..}
:: = {<or_term2> [OR <or_term2> l I <and_term2> [AND < and_term2 > l... }
:: = {AIBICI DIINRange IOUTRange}

:: = {NOTA INOTB INOTC INOTD IINRange IOUTRange}

::= {EIFIGIH}

::= {NOTEINOTFINOTGINOTH}

STRace Subsystem
12-17

STORe

Examples: 0UTPUT xXX;":IIACHINEl:STRACE:STOREI AI{YSTATE"

OUTPUT XXX;":I{ACHII{El :STRACE:STORE2 OUTRANGE'

OUTPUT XXX;":ilACHIt{E1:STRACE:STORE3 (ll0TC AND }l0TD AND t{0TH)'

Query Syntax: :MACHine{l l2i:STRace:STOFle < N >?

Returned Format: [:MACHine{1 l2}:STRace:STORe<N>] <store-qualifi€r> <NL>

Example: 10 DIt-t Strins$ [1oo]

20 OUTPUT XXX; " :l,lACHIl{E1 : STRACE : STORE4?"

30 ENTER XXX ; Str i ng$

40 PRINT String$
50 END

STRace Subsystem
12-18

HP 16528/16s38
Programming Reference

STORe

Examples:

Query Syntax:

Returned Format:

Example:

STRace Subsystem
12-18

OUTPUT XXX;":MACHINE1:STRACE:STORE1 ANYSTATE"
OUTPUT XXX;":MACHINE1:STRACE:STORE2 OUTRANGE"
OUTPUT XXX;":MACHINE1:STRACE:STORE3 (NOTC AND NOTD AND NOTH)"

:MACHine{112}:STRace:STORe<N>?

[:MACHine{112}:STRace:STORe<N>] <store_qualifier> <NL>

10 DIM String$[100]
20 OUTPUT XXX;":MACHINE1:STRACE:STORE4?"
30 ENTER XXX;String$
40 PRINT StringS
50 END

HP 16528/16538
Programming Reference

TAG

TAG command/query

The TAG sommand selects the type of count tagging (state or time) to be
performed during data acquisition. State tagging is indicated when the
psrameter is the state tag qualifier, which will be counted in the qualified
state mode. The qualifier may be a single term or a complex expression.
The terms A through H are defined by the TERM command. The terms
INRange and OUTRa'go are defined by the RANGe command.

E4pressions are limited to what you could manually enter through fts
Format menu. Regard*g parentheses, the sptzur definitions below show
only the required ones. Additional parentheses are allowed as long as the
msaning of the e4pression is not gfuangod. A detailed example is provided
in figure L2-2.

Because count tagging requires a minimu- clock period of 60 ns, the
CPERiod and TAG commands are interrelated (the CPERiod com-and
is in the SFORmat subsystem). When the clock period is set to l-ess
Than, count tagging is turned off. When count tagging is set to either state
or time, the clock period is automatically set to Greater Than.

The TAG query returns the current count tag specification.

:MACHine{l l2}:STRace:TAG {OFF I TIME | <state_tag_qualifier>1

ii= { ANYState I NOSTate | <any_term>
|

(< exoression 1 > [{AND I OR} < expression2>]) |

(<expression2t [{AND I OR} <sxpressionl >]) }
l= {<or terml > | <and_terml > | <or term2> | <and_term2>}
ir= {<or terml >IOR <or terml >J... | <and_terml >[AND <and_term1>J...]
::= {<or term2>[OR <or term2>J... | <and_term?>[AND <and_term2>]...]
:: = {AlB lC lD llNRange lOUTRange}
ri = {NOTAINOTB I NOTC INOTD llNRange lOUTRange}
::= {ElFlGlH}
ir = {NOTE INOTFINOTG INOTH}

Command Syntax:

where:

< state_tag_qualifier >

< any_term >
< expression 1 >
< expression2 >

< or_term 1 >
< and_term 1 >

< or_term2>
< and term2 >

HP 16528/16s38
Programming Reference

STRace Subsystem
12-19

TAG

TAG

command/query

The TAG command selects the type of count tagging (state or time) to be
performed during data acquisition. State tagging is indicated when the
parameter is the state tag qualifier, which will be counted in the qualified
state mode. The qualifier may be a single term or a complex expression.
The terms A through H are defmed by the TERM command. The terms
INRange and OUTRange are defmed by the RANGe command.

Expressions are limited to what you could manually enter through the
Format menu. Regarding parentheses, the syntax defmitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed. A detailed example is provided
in ftgUre 12-2.

Because count tagging requires a minimum clock period of 60 ns, the
CPERiod and TAG commands are interrelated (the CPERiod command
is in the SFORmat subsystem). When the clock period is set to Less
Than, count tagging is turned off. When count tagging is set to either state
or time, the clock period is automatically set to Greater Than.

The TAG query returns the current count tag specification.

Command Syntax: :MACHine{112}:STRace:TAG {OFF I TIME I <state_tag_qualifier>}

where:

<state_tag_qualifier>

<any_term>

< expression1>

< expression2 >

< or_term1>

< and_term 1>

< or_term2 >

< and_term2 >

HP 16528/16538
Programming Reference

::= {ANYState I NOSTate I <any_term> I

(< expression1> [{AND lOR} < expression2 >]) I

(< expression2 > [{AND lOR} < expression1 >]) }

:: = {<or_term1 > I < and_term1> I <or_term2> I < and_term2 > }

:: = {<or_term1 > [OR < or_term1 >] I < and_term1> [AND < and_term 1 > J }
:: = {<or_term2> [OR <or_term2>] I < and_term2 > [AND <and_term2> l }
:: = {AI BIC IDIINRange IOUTRange}

:: = {NOTAl NOTB INOTC INOTD IINRange IOUTRange}

::= {EIFIGIH}

::= {NOTEINOTFINOTGINOTH}

STRace Subsystem
12-19

TAG

ExampleS: 0UTpUT XXX;":titACHIt{E1 :STRACE:TAG 0FF,,

OUTPUT XXX;" :l{ACHtNEI :STRACE :TAG TIHE"

OUTPUT XXX;":I'IACHINEl:STRACE:TAG (INRANGE 0R lioTF)"
0UTPUT XXX;":I{ACHINEI:STRACE:TAG ((II{RAN6E 0R A) AND E)"

Query Syntax: :MACHine{l l2} :STRace:TAG?

RetUrnedFOrmat: [:MACHine{tl2}:STBace:TAG] {OFFITIMEI<stare_rag_quatifier>}<NL>

Example: 10 D I r't St r i nsg [t oo]

20 0UTPUT XXX; ":MACHINtl : STRACE :TAG?"

30 ENTER XXX ; Str i ng$

40 PRINT String$
50 END

STRace Subsystem
12-20

HP 16s2Bl16538
Programming Relerence

TAG

Examples:

Query Syntax:

Returned Format:

Example:

STRace Subsystem
12-20

OUTPUT XXX;":MACHINE1:STRACE:TAG OFF"
OUTPUT XXX;":MACHINE1:STRACE:TAG TIME"
OUTPUT XXX;":MACHINE1:STRACE:TAG (INRANGE OR NOTF)"
OUTPUT XXX;":MACHINEl:STRACE:TAG ((INRANGE OR A) AND E)"

:MACHine{112} :STRace:TAG?

[:MACHine{112}:STRace:TAG] {OFFITIMEI <state_tag_qualifier>} < NL>

10 DIM String$[100]
20 OUTPUT XXX;":MACHINE1:STRACE:TAG?"
30 ENTER XXX;String$
40 PRINT StringS
50 END

HP 16528/16538
Programming Reference

TERM

TERM

HP 16s28/16538
Programming Reference

command/query

The TERM command allows you to a specify a pattern recognizer term in
the specified machine. Each command deals with only one label in the
glven term; therefore, a complete specification could require several
commands. Since a label can contain 32 or less bits, the range of the
pattern value will be between f32 - 1 and 0. When the valur

-of
a pattern is

expressed in binary, it represents the bit values for the label inside the
pattern recrigtruzor tetm. Since the pattern p&rameter may contain don't
cares and be represented in several bases, it is handled as a string of
characters rather than a number.

When 3 single state machine is on, all erght terms (A through H) are
available in that machine. When two state msghines are on, terms A
through D are used by the first state machine define4 and terms E
through H are used by the second state machine defined.

The TERM query returns the specification of the term specified by term
identification and label name.

:lvlAOHine{1 l2}:STRace:TERM <term id >, < label_name), (pattern >Command Syntax:

where:

<term_id> :: = {AlBlClDlElFlGlH}
< labef_name > :: = string of up to 6 alphanumeric charasters

<pattern> ::= "{#B{011 lX} . . . I

#o{01 1 12 13 14 15 16l7lx} . . .
I

#H{011 l2lsl4lsl6lTlslelAlBlclDlElFlx} . . . I

{011 12l314l5161718le} . . . }'

Exampfe: 0uTpuT XXX ; " : I'IACHINEl : STRACE : TERt't A,' DATA

"'
255".

0UTPUT XXX; ":MACHINEl :STRACE:TERM B,'ABC','#BXXXX1101'

STRace Subsystem
12-21

TERM

TERM

command/query

The TERM command allows you to a specify a pattern recognizer term in
the specified machine. Each command deals with only one label in the
given term; therefore, a complete specification could require several
commands. Since a label can contain 32 or less bits, the range of the
pattern value will be between 232

- 1 and o. When the value of a pattern is
expressed in binary, it represents the bit values for the label inside the
pattern recognizer term. Since the pattern parameter may contain don't
cares and be represented in several bases, it is handled as a string of
characters rather than a number.

When a single state machine is on, all eight terms (A through H) are
available in that machine. When two state machines are on, terms A
through D are used by the fIrst state machine defmed, and terms E
through H are used by the second state machine defmed.

The TERM query returns the specification of the term specified by term
identification and label name.

Command Syntax: :MACHine{112}:STRace:TERM <term_id>,<label_name>,<pattern>

where:

<term_id>
< label_name>

<pattern>

Example:

HP 16528/16538
Programming Reference

::= {AIBICIDIEIFIGIH}
:: = string of up to 6 alphanumeric characters

:: = H{#B{OI1IX} ... I

#Q{OI11 2 131 4151617IX} ... I
#H{OI11 213141516171819IAIBICIDIEIFIX} ... I
{OI11213141516171819} ... }H

OUTPUT XXX;":MACHINEl:STRACE:TERM A, 'DATA', '255' "
OUTPUT XXX;":MACHINEl:STRACE:TERM B, 'ABC', '#BXXXXII01' "

STRace Subsystem
12-21

TERM

Query Syntax: :MACHine{1 l2}:STRace:TERM? <term_id>,<label_name>

Returned Format: [:MACHine{l I2}:STRAco:TERM] <term_ld>,<label_name>,<pattorn> <NL>

Example: to DIlt Strins$[1oo]
20 OUTPUT XXX;" :MACHINEl :STRACE :TERM? B,'DATA"'
30 ENTER XXX; Str i ng$

40 PRINT String$
50 END

STRace Subsystem
12-22

HP 16528/16538
Programming Reference

TERM

Query Syntax:

Returned Format:

Example:

STRace Subsystem
12-22

:MACHine{1 12}:STRace:TERM? < term_id > , < label_name>

[:MACHine{112}:STRAce:TERM] <term_id >, < label_name>, < pattern> < NL>

10 DIM String$[lOO]
20 OUTPUT XXX;":MACHINE1:STRACE:TERM? B, 'DATA' "
30 ENTER XXX;String$
40 PRINT String$
50 END

HP 16528/16538
Programming Reference

r

r

SLISI Subsystem 13
Introduction

HP 1652B.,/16s38
Programming Reference

The SLIST subsystem contains the co--ands available for the State
Listing menu in the HP 1652B,1538 logi c analyzer. These sommands are:

o COLumn
o DATA
o LINE
o MMODe
. OPATtern
o OSEarch
o OSTate
. OTAG
o RUNTiI
o TAVerage
o TMAXimum
. TMINimum
o VRUNs
. XOTag
o)GATtern
o XSEarch
o XSTate
o XTAG

SLIST Subsystem
1 3-1

SLISt Subsystem 13
Introduction

HP 16528/16538
Programming Reference

The SLISt subsystem contains the commands available for the State
Listing menu in the HP 1652B/53B logic analyzer. These commands are:

• COLumn
• DATA

• LINE
• MMODe
• OPATtem
• OSEarch
• OSTate
• OTAG
• RUNTil
• TAVerage

• TMAXimum
• TMINimum
• VRUNs
• XOTag
• XPATtem
• XSEarch
• XSTate
• XTAG

SLIST Subsystem
13-1

sPoce p.i co l-nurn: SLIST I obe l-nome

COL umn ? spoce co l-nurn

DATA? spoce itne_numDer I obe l-nome

I ine-nun'Lmrd-screen

LINE?

PATTern

STAT e

OPATtern t obe l_norne lobei-ooltern

OPAT Le r n? sPoce I obe | -nome

occurrence F\ , I

STAR t

OSEorch spoce TRIGge r

XMARk e r

OSIorch?

Figure 13-1. SLISI Subsystem Syntax Diagram

SL|ST Subsystem
13-.2

HP 1652B,,/16s38
Programming Reference

label_pattern~----~~

"-.\ XMARk e r

01650S10

Figure 13-1. SLISt Subsystem Syntax Diagram

SLIST Subsystem
13-2

HP 16528/16538
Programming Reference

t ime-vo lue

s to te-vo lue

OTAG?

RUNT i I sPoce run-unti l-spec

RUNTiI?

TAVe r oge?

TMAX irnum?

TMIN imum?

VRUNs ?

XOT og ?

s poce I obe I -nome lobel-potternXPATtern

I obe l-nornespoceXPATtern?

spoceXSEorch occu r r ence TRIGger

STAR t

XSEorch?

XSTote?

spcce t ime-vo I ue

s to te-vo I ue

XTAG?
r65ro/9xo6

Figure 13-1. SLISI Subsystem Syntax Diagram (continued)

HP 16528/16538
Programming Reference

SLIST Subsystem
1 3-3

r un_u n t i 1_5 pe c I------------------tl~

TAVer age?)----------------------------~

TMAX imum?)----------------------------~

TMIN i mum?)-----------------------------..l

label_pattern ~---~

XTAG?)---------------------------------'
16510/SX06

Figure 13-1. SLISt Subsystem Syntax Diagram (continued)

HP 16528/16538
Programming Reference

SLIST Subsystem
13-3

module_num : {112j1415lr
mach_nuar = {1|'2!,
col_num : 11l2l3l4lsl6l7l8l
llne_number : integerfrom -1023 to + 1023
lrabel name = a string of up to 6 olphanurneic charucten
base : {BlNarylHEKadecimallOCTallDECimallASCiilsYMBollASSemblerl for labels or

{AB S olute
I
RE Lative } for tags

line_num mid_scrcen : integerlrom -1023 to + 1023
labeljrattern :'{#8{011 l,Y}. . . I

#Q{ql1l2l3l4lsl6l7lx} . . . I

#H {0 | 1 12 | 3 14 | s 16 17 lsle lA lB lc I
D

I
E

I
r lx} . . . I

I0l t 1213l4lsl6l7lgle\ . . . I"
occurnence = integer from -1023 to + 1023

time_value = rcal number
state_value : real number
nrt'_untilspe c = {OFF I

LT, < value > | GT, < value >
| INRange, < value), < value >

|

OUTRange, < value >, < value > |
value = real number

Figure 13-1. SLISI Subsystem Syntax Diagram (continued)

SLIST Subsystem
13-4

HP 16528/16538
Programming Reference

module_num = {112131415}
mach_num = {112}
col_num = {112131415161718}
line_number = integerfrom -1023 to + 1023
label_name = a string ofup to 6 alphanumeric characters
base = {BINary IHEXadecimal IOCTal IDECimal lASCii ISYMBol I!ASSembler} for labels or

{ABSolute IRELative} for tags
line_num_mid_screen = integerfrom -1023 to + 1023
labelJJattern = "{#B{OllIX} I

#Q{011121314151617IX} I
#H{0111213141516171819IA IBICIDIEIFIX} ... I
{0111213141516171819} ... }"

occurrence = integerfrom -1023 to + 1023
time_value = real number
state_value = real number
run_until_spec = {OFF IL T, < value> IGT, < value> IINRange, < value>, < value> I

OUTRange, <value>, <value> }
value = real number

Figure 13-1. SLISt Subsystem Syntax Diagram (continued)

SLIST Subsystem
13-4

HP 16528/16538
Programming Reference

SLIST

SLIST

HP 16s28/16538
Programming Reference

selector

The SLIST selector is used as part ofa compound header to access those
settings normally found in the State Listing menu. It always follows the
MACHine selector because it selects a branch directlv below the
MACHine levelin the command tree.

Command Syntax: :MAGHine{l l2}:SLtSt

bcample: ouTpuT xXX;":HAcHINEI:SLIST:LINE 256"

SLIST Subsystem
195

SLISt

Command Syntax:

Example:

HP 16528/16538
Programming Reference

SLISt

selector

The SLISt selector is used as part of a compound header to access those
settings normally found in the State Listing menu. It always follows the
MACHine selector because it selects a branch directly below the
MACHine level in the command tree.

:MACHine{112}:SLlSt

OUTPUT XXX;":MACHINEl:SLIST:LINE 256"

SLIST Subsystem
13-5

COLumn

COLumn command/query

The COLumn command allows you to configure the state analyzer
list display by assiening a label name and base to one of the eight vertical

;lffi :-*n:T',"T;,t::ffi fi nT,ffi 'Hi:;'J,ll1Tll","o",

ili';ll#lH;;:;hTiffffi *l#itt:"'ff
sffi sdssrrrmnispracedin

When the label name is "TAGS,' the TAGS col'm" is assumed and the
next parameter must speci$ RELative or ABSolute.

The COLum. query returns the column number, label na-e, and base for
the sPecified col'mn.

Command Syntax: :MACHine{1 l2}:SLlStGOLumn <clt_num>,<labet_name>,<base>

where:

<cot_num> ::= {1l2l3l4lSl6l7l8}
<label_name> ::= astring of upto 6alphanumericcharacters

<base> ;; = {BlNarylHDhdecimal lOCTallDECimal lASCiilSYMBol I lASSembler} for labols

or

ri : {ABSolute lRELative} for tags

not" q;$ i"Pg#:-
must be assiped in order to use ABSolute or RElative

Examples: 0UTPUT xXX ; " : t'tAcHINEl : SL IST : C0LUMN 4, 2, t,tACHI NE1,'A

"
HEX'

OUTPUT XXX ; " : MACHINEl : SL IST : COLUMN 1, 2, MACHI NEl,'TAGS', ABSOLUTE"

SLIST Subsystem
13-6

HP 16528/16538
Programming Relerence

COLumn

COLumn command/query

The COLumn command allows you to configure the state analyzer
list display by assigning a label name and base to one of the eight vertical
columns in the menu. A column number of 1 refers to the left most
column. When a label is assigned to a column it replaces the original label
in that column. The label originally in the specified column is placed in
the column the specified label is moved from.

When the label name is "TAGS," the TAGS column is assumed and the
next parameter must specify RELative or ABSolute.

The COLumn query returns the column number, label name, and base for
the specified column.

Command Syntax: :MACHine{112}:SLlSt:COLumn <col_num >, <label_name>, <base>

where:

<col num>

< label_name>

<base>

I

Note '"

Examples:

SLIST Subsystem
13-6

::= {1 12131415161718}
:: = a string of up to 6 alphanumeric characters

:: = {BINary IHEXadecimal IOCTal IDECimallASCii ISYMBoIIIASSembler} for labels

or

:: = {ABSolute IRElative} for tags

A label for tags must be assigned in order to use ABSolute or REIJative
state tagging.

OUTPUT XXX;":MACHINEl:SLIST:COLUMN 4,2,MACHINEl, 'A' ,HEX"
OUTPUT XXX;":MACHINEl:SLIST:COLUMN 1,2,MACHINEl, 'TAGS', ABSOLUTE"

HP 16528/16538
Programming Reference

COLumn

Query Syntax: :MACHine{l l2}:SUSrCOLrmn? <col_num>

Returned Format: [:MACHine{112}:SLlSt;GOLrmn] <col_num>,<label_name>,<base> <NL>

Example: 10 DrM cl$[1oo]
20 0UTPUT XXX; " :l,lACHINEl : SLIST :COLUl,lN? 4"
30 ENTER XXX; C l$
40 PRINT C]$

50 END

HP 16528/16538
Programming Relerence

SLIST Subsystem
13-^7

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

COLumn

:MACHine{112}:SUSt:COLumn? <col_num>

[:MACHine{112}:SLlSt:COLumn] <col_num> ,< label_name>, <base> < NL>

10 DIM C1$ [100]
20 OUTPUT XXX;":MACHINE1:SLIST:COLUMN? 4"
30 ENTER XXX;C1$
40 PRINT Cl$
50 END

SLIST Subsystem
13-7

DATA

DATA

SLIST Subsystem
1 3-g

where:

< line_number > li =
< label_name > :: =

< pattern_string > it :

query

The DATA query returns the value at a specified line number for a given
label. The format will be the same as the one shown in the Listing display
except for ASCII Symbols, or Inverse Assembly which will be returned in
HEX.

Query Syntax: :MACHine{1 l2}:SLlSt:DATA? <line_number>, <tabet_name>

Returned Format: [:MACHine{ 1r2:1:SLtSt:DATA]

< line number), (label_name >, < pattern_string > < NL>

integer from -1023 to + 1023

string of up to 6 alphanumeric characters

"{#B{0l1lx}...1
#o{0 11l2l3 I4 ls l6 l7 lx} . . . I

#H{0 | 1 l2 l3 l4 l5 l6 l7 l8 le lA I B I c I D I E I F lx} . . . I

{01 1 12 1314 15 16 17 l8le} . . . }.'

Example: 10 Drll sd$ [too]
20 0UTPUT XXX;":MACHINEl :SLIST:DATA? 5I?,'RAS "'
30 ENTER XXX;Sd$

40 PRINT Sd$

50 END

HP 16528/16s38
Programming Reference

DATA

DATA query

The DATA query returns the value at a specified line number for a given
label. The format will be the same as the one shown in the Listing display
except for ASCII, Symbols, or Inverse Assembly which will be returned in
HEX.

Query Syntax: :MACHine{112}:SLlStDATA? < line_number>, < label_name>

Returned Format: [:MACHine{112}:SLlStDATA]

< line_number> ,< label_name> ,< pattern_string> < NL >

where:

<line_number>

< label_name>

< pattern_string>

Example:

SLIST Subsystem
13-8

:: = integer from -1023 to +1023

:: = string of up to 6 alphanumeric characters

:: = "{#B{011IX} ... I
#Q{OI1121314151617IX} ... I
#H{OI112131 4 1516171819IAIBICIDIEIFIX} ... I
{OI11213141516171819} ... }"

10 DIM Sd$ [100J

20 OUTPUT XXX;":MACHINE1:SLIST:DATA? 512, 'RAS'"

30 ENTER XXX;Sd$

40 PRINT Sd$

50 END

HP 16528/16538
Programming Reference

LINE

LINE

Command Syntax:

where:

< line_n um_mid_screen >

Query Syntax:

Returned Format:

bcample:

HP 16s28/16538
Programming Reference

: MACHine{ 1 | 2}: SLISI LINE?

[:MACHine{1 l2}:SLlSt:LINE] < line_num_mid_screen > < NL>

10 DII'I Ln$ [100]
20 0UTPUT XXX ; " :I'IACHINEl : SLIST : LINE?"

30 ENTER XXX; Ln$

40 PRINT Ln$

50 END

command/query

The LINE command allows you to scroll the state analyzer tisting
vertically. The command specifies the state line number relative to the
trigger that the anal@r will be highlighted at center screen.

The LINE query returns the line number for the state currently in the
box at center screen.

:lvlACHine{1 l2}:SLISILINE < line_num_mid_screen >

Example: oUTPUT xXX;":MACHINEl:SLIST:LIl{E 0"

SLIST Subsystem
1&9

LINE

LINE

command/query

The LINE command allows you to scroll the state analyzer listing
vertically. The command specifies the state line number relative to the
trigger that the analyzer will be highlighted at center screen.

The LINE query returns the line number for the state currently in the
box at center screen.

Command Syntax: :MACHine{112}:SLlStLiNE < line_num_mid_screen >

where:

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

:: = integer from -1023 to +1023

OUTPUT XXX;":MACHINEl:SLIST:LINE 0"

:MACHine{112}:SLlSt:LlNE?

[:MACHine{112}:SLlStLlNE] <line_num_mid_screen> <NL>

10 DIM Ln$[100]

20 OUTPUT XXX;":MACHINEl:SLIST:LINE?"
30 ENTER XXX;Ln$
40 PRINT Ln$
50 END

SLIST Subsystem
13-9

MMODe

MMODe

SLIST Subsystem
13-10

command/query

The MMODe command (Marker Mode) selects the mode
"sl6slling

the
marker movement and the display of marker readouts. When PATTern is
selected the markers will be placed on patterns. When STATe is selected
and state tagging is oq the markers move on qualified states counted
between normally stored states. When TIME is selected and time tagging
is enable4 the markers move on time between stored states. When
MSTats is selected and time tagging is on, the markers are placed on
patterns, but the readouts will be time statistics.

The MMODe query returns tle current marker mode selected.

Command Syntax: :MACHine{l I2}:SLISIMMODo <marker-mode>

where:

<marker mode> ::= {OFFIPATTernlSTATelTlMElMSTats}

Example: oUTPUT xxx; " :MACHINEI : sLIST : MMoDE TII'IE"

Query Syntax: :MACHine{l t2}:SLISIMMODo?

Returned Format: [:MACHine{1 l2}:SLISIMMODeJ < marker_mode > < NL>

Example: 10 DIr'r ung[1oo]

20 OUTPUT XXX;": MACHINEI : SLIST: l,ll'l0DE?"

30 ENTER XXX;Mn$

40 PR I NT tln$

50 END

HP 1652B.116s38
Programming Reference

MMODe

MMODe command/query

The MMODe command (Marker Mode) selects the mode controlling the
marker movement and the display of marker readouts. When PATTem is
selected, the markers will be placed on patterns. When STATe is selected
and state tagging is on, the markers move on qualified states counted
between normally stored states. When TIME is selected and time tagging
is enabled, the markers move on time between stored states. When
MSTats is selected and time tagging is on, the markers are placed on
patterns, but the readouts will be time statistics.

The MMODe query returns the cmrent marker mode selected.

Command Syntax: :MACHine{112}:SLlStMMODe <marker_mode>

where:

< marker_mode>

Example:

Query Syntax:

Returned Format:

Example:

SLIST Subsystem
13-10

::= {OFFIPATIernISTATeITIMEIMSTats}

OUTPUT XXX;":MACHINEl:SLIST:MMODE TIME"

:MACHine{112}:SLlStMMODe?

[:MACHine{112}:SLlStMMODe] <marker_mode> <NL>

10 DIM Mn$ [100]
20 OUTPUT XXX;":MACHINE1:SLIST:MMODE?"
30 ENTER XXX;Mn$
40 PRINT Mn$
50 END

HP 16528/16538
Programming Reference

OPATtern

OPATtern

Command Syntax:

where:

< label_name >

< label_pattern >

HP 1652B./16s38
Programming Reference

command/query

The OPATtern cornmand allows you to construct a pattern recogstzr;r
term for the O Marker which is then used with the OSEarch criteria when

moving the marker on patterns. Since this rcmmand deals with only one

label at a time, a complete specification could require several invocations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recoErizer term. In whatever base

is used, the value must be between 0 and 2"" - 1., since a label may not have

more than 32 bits. Because the < label3attern > pilameter may contain
don't cares, it is handled as a string of characters rather than a number.

The OPATtern query returns the pattern specification for a gwen label
name.

:MACHine{1 l2}:SLlSt:OPATtern < labet-name), (label-pattern >

:: = string of up to 6 alphanumeric charasters

::="{#B{0l1lX}...1
#o{o 11l2l3 l4 ls l6l7 lx} . . . I

#H{0 lll2l3l4lsl6lTlslelAlBlclDlElFlx} . . . I

to l 1 121314 ls l6 1718 le) . . .).'

Examples: 0UTPUT XXX;":MACHINE1 :SLIST:OPATTERN'DATA',' 255"'
0UTPUT XXX; " : MACHI NE1 : SL I ST:OPATTERN 'ABC' , '#BXXXX1 101 '

SLIST Subsystem
13-1 1

oPATtern

oPATtern

command/query

The OPATtem command allows you to construct a pattern recognizer
term for the 0 Marker which is then used with the OSEarch criteria when
moving the marker on patterns. Since this command deals with only one
label at a time, a complete specification could require several invocations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern reco~er term. In whatever base
is used, the value must be between 0 and 2 2 - 1, since a label may not have
more than 32 bits. Because the < labelyattern > parameter may contain
don't cares, it is handled as a string of characters rather than a number.

The OPATtern query returns the pattern specification for a given label
name.

Command Syntax: :MACHine{112}:SLlStOPATtern < label_name>, < label_pattern>

where:

< label_name>

< label_pattern>

Examples:

HP 16528/16538
Programming Reference

:: = string of up to 6 alphanumeric characters

:: = "{#B{OI1IX} ... I
#Q{OI1121314151617IX} ... I
#H{OI11213141516171819IAIBICIDIEIFIX} ... I
{OI11213141516171819} ... }"

OUTPUT XXX;":MACHINEl:SLIST:OPATTERN 'DATA', '255' "
OUTPUT XXX;":MACHINEl:SLIST:OPATTERN 'ABC', '#BXXXXl101' rr

SLIST SUbsystem
13-11

OPATtern

Query Syntax: :MAGHine{1 l2}:SLlSt:OPATtern? <label_name>

Returned Format: [:MACHine{1 l2}:SLlStOPATtern] <label_name>, <label3attem> <NL>

Example: 10 DIM opg [1oo]
20 0UTPUT XXX; ":MACHINEl: SLIST:OPATTtRN? 'A"'
30 ENTER XXX;0p$

40 PR I NT 0p$

50 IND

SLIST Subsystem
13-^l2

HP 16s28/16538
Programming Reference

oPATtern

Query Syntax: :MACHine{112}:SLlStOPATtern? <label_name>

Returned Format: [:MACHine{112}:SLlStOPATtern] <label_name>, <labelJ)8ttern> <NL>

Example: 10 0I M Op$ [100]

20 OUTPUT XXX;":MACHINE1:SLIST:OPATTERN? 'A'"

30 ENTER XXX;Op$

40 PRINT Op$

50 END

SLIST Subsystem
13-12

HP 16528/16538
Programming Reference

OSEarch

OSEarch

HP 16s28/16s38
Programming Reference

command/query

ff"fl i",fl"f#'-.*t'*Hf a;Ti:trl#;?ieomarker'
specification when moving the markers on patterns. The origin parameter
tells the marker to begin a search with the trigger, the start of datq or with
the X marker. The actual occurrence the marker scarches for is
determined by the occurrence paremeter of the OPATtern
reengnizet specification, relative to the origin. An occurrence of 0 places

the marker on ttre selected origin. With a negative osculrence, the marker

::il:l!:H:"","r3:'?tr'
with a positive oocturenoe' the marker

The OSEarch query returns the search criteria for the O marker.

Command Syntax: :MACHino{l l2}:SUSt:OSEarch <o@urronce>,<origin>

where:

< occurren@ > :: = integer from -1023 to + 1023

<origin > ii = {TRlGger I START lXlvlAFker}

Example: oUTPUT xXX;" :MACHINEI :SLIST:0SEARCH +10,TRIGGER"

Query Syntax: :MACHine{1 l2}:SLISt:OSEarch?

Returned Format: [:MACHine{1 l2}:SLlSt:OSEarchJ <occurrenoe), (origin > < NL>

Exarnple: 10 DItl osg[1oo]

20 OUTPUT XXX ; " :l,lACHINEl : SLIST:OSEARCH?"

30 ENTER XXX;0s$

40 PRINT 0s$

50 END

SLIST Subsystem
13-13

OSEarch

OSEarch

command/query

The OSEarch command dermes the search criteria for the 0 marker,
which is then used with associated OPATtem recognizer
specification when moving the markers on patterns. The origin parameter
tells the marker to begin a search with the trigger, the start of data, or with
the X marker. The actual occurrence the marker searches for is
determined by the occurrence parameter of the OPATtem
recognizer specification, relative to the origin. An occurrence of 0 places
the marker on the selected origin. With a negative occurrence, the marker
searches before the origin. With a positive occurrence, the marker
searches after the origin.

The OSEarch query returns the search criteria for the 0 marker.

Command Syntax: :MACHine{112}:SLlStOSEarch < occurrence> ,< origin>

where:

< occurrence >

<origin>

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

:: = integer from -1023 to + 1023

:: = {TRIGger ISTARt IXMARker}

OUTPUT XXX;":MACHINE1:SLIST:OSEARCH +10,TRIGGER"

:MACHine{112}:SLlStOSEarch?

[:MACHine{112}:SLlStOSEarch] <occurrence>, <origin> < NL>

10 DIM Os$ [100]
20 OUTPUT XXX;":MACHINEl:SLIST:OSEARCH?"
30 ENTER XXX:Os$
40 PRINT Os$
50 END

SLIST Subsystem
13-13

OSTate

OSTate guery

The OSTate query returns the line number in the listing where the O
marker resides (-10?3 to + L0?3). If data is not valid , the query returns
3n67.

: MACHine { 1 | 2} : SLISI OSTate?

[:MAGHine{1 l2}:SLlSt:OSTateJ <state_num > < NL>

:: = an integer from -1023 to + 1023, or 32767

10 DIM 0s$[100]

20 OUTPUT XXX; " : I'IACHI NEl : SL I ST :0STATE?"

30 EiITER XXX;0s$

40 PRINT 0s$

50 END

HP 16528/16538
Programming Reference

Query Syntax:

Retumed Format:

where:

< state_num >

Example:

SLIST Subsystem
13-14

eSTate

eSTate query

The OSTate query returns the line number in the listing where the 0
marker resides (-1023 to + 1023). If data is not valid, the query returns
32767.

Query Syntax: :MACHine{112}:SLlSt:OSTate?

Returned Format: [:MACHine{112}:SLlSt:OSTate] <state_num> <NL>

where:

<state_num>

Example:

SLIST Subsystem
13-14

:: = an integer from -1023 to +1023, or 32767

10 DIM Os$ [100]
20 OUTPUT XXX;":MACHINE1:SLIST:OSTATE?"
30 ENTER XXX;Os$
40 PRINT Os$
50 END

HP 16528/16538
Programming Reference

OTAG

OTAG

HP 1652B.116s38
Programming Reference

command/query

frt'.ft :,trf; .-+"rl'fi Si:t"#""ffi "#',H;3XT**.
when state tagging is on. If the data is not valid taEged data, no action is
performed.

Ihe OTAG query returns the O Marker position in time when tine
ta$ngis on or in states when state tagging is on, regardless of whether
the marker was positioned in time or through a pattern search. If data is
not valid, the query returns 9.9H17 for time tagging 3n67 for state
tagging.

Command Syntar :ilhCHine{l I2}:SUSIOTAG { <time_value > | <state_value > }

where:

<time_value> :: = real number
<state value> ::= inieger

E:<ample: :0UTPUT XXX;":l,lACHINEl:SLIST:oTAG 40.0E-6"

Query Syntax: :MACHine{1 I2}:SLTSTOTAG?

Returned Format: [:MACHine{112}:SLISIOTAG] {<time_value> l<state_vatue>}<NL>

Example: lo DIl,t otg[too]
20 0UTPUT XXX;" :l'lACHIi{El :SLIST:0TAG?"

30 ENTER XXx;0t$
40 PRINT Ot$

50 END

SLIST Subsystem
1&15

OTAG

OTAG

command/query

The aTAG command specifies the tag value on which the a Marker
should be placed. The tag value is time when time tagging is on or states
when state tagging is on. If the data is not valid tagged data, no action is
performed.

The aTAG query returns the a Marker position in time when time
tagging is on or in states when state tagging is on, regardless of whether
the marker was positioned in time or through a pattern search. If data is
not valid, the query returns 9.9E37 for time tagging, 32767 for state
tagging.

Command Syntax: :MACHine{112}:SLlStOTAG {<time_value> I<state_value>}

where:

<time_value>

< state_value>

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

:: = real number

:: = integer

:OUTPUT XXX;":MACHINE1:SLIST:OTAG 40.0E-S"

:MACHine{112}:SLlSt:OTAG?

[:MACHine{112}:SLlStOTAG] {<time_value> I<state_value>} < NL>

10 DIM Ot$ [100]
20 OUTPUT XXX;":MACHINE1:SLIST:OTAG?"
30 ENTER XXX;Ot$
40 PRINT Ot$
50 END

SLIST Subsystem
13-15

RUNTiI

RUNTiI

SLIST Subsystem
13-16

command/query

The RUNTiI (run until) command allows you to define a stop condition
when the trace mode is repetitive. Specifying OFF causes the analyzer to
make runs until either the display's STOP field is touched or the STOP
conmand is issued.

There are four conditions based on the time between the X and O
markers. Using this difference in the condition is effective only when time
tags have been turned on (see the TAG command in the STRace
subsystem). These four conditions are as follows:

. The difference is less than (LT) some value.
o The difference is greater than (GT) some value.
o The difference is inside some range (INRange).
o The difference is outside some range (OUTRange).

End points for the INRange and OUTRange should be at least 4O ns apart
since this is the minimum time resolution of the time tag counter.

There are two conditions which are based on a comparison of the
acquired state data and the compare data i-age. You can run until one of
the following conditions is true:

o Compare Equal (EOUal) - Every channel of every label has the
same value.

o Compare not equal (NEQual) - Any cha"nel of any label has a

different value.

The RUNTiI query returns the current stop criteria.

,tCl The RUNTiI instruction (for state analysis) is available in both the SLIST
NOtg It and COMPare subsvstems.

HP 16528../16538
Programming Reference

RUNTil

RUNTil

I
Note"

SLIST Subsystem
13-16

command/query

The RUNTil (run until) command allows you to defme a stop condition
when the trace mode is repetitive. Specifying OFF causes the analyzer to
make runs until either the display's STOP field is touched or the STOP
command is issued.

There are four conditions based on the time between the X and 0
markers. Using this difference in the condition is effective only when time
tags have been turned on (see the TAG command in the STRace
subsystem). These four conditions are as follows:

• The difference is less than (LT) some value.
• The difference is greater than (GT) some value.
• The difference is inside some range (INRange).
• The difference is outside some range (OUTRange).

End points for the INRange and OUTRange should be at least 40 ns apart
since this is the minimum time resolution of the time tag counter.

There are two conditions which are based on a comparison of the
acquired state data and the compare data image. You can run until one of
the following conditions is true:

• Compare Equal (EQUal) - Every channel of every label has the
same value.

• Compare not equal (NEQual) - Any channel of any label has a
different value.

The RUNTil query returns the current stop criteria.

The RUNTil instruction (for state analysis) is available in both the SLISt
and COMPare subsystems.

HP 16528/16538
Programming Reference

RUNTiI

COmmand Syntax: :MACHine{1 l2}:SLlSt:RUNTil < run_until_spec >

where:

<run_until_spec> ir: {OFFILT,<valuet lGT,<value> llNRange,<value),(value>
I OUTRange, <value), (value > | EQUaI I NEQual)

<value > ::= real number from 10E-9 to +9E9

Example: oUTPUT xxX; " : MACHI NEl : SL I ST : RUNTI L GT,800. 0E-6"

Query Syntax: :MACHine{1 l2}:SLlSt:RUNTil?

Returned Format: [:MACHine{ 1,2.1:SLlSt:RUNTil] < run_until_spec > < NL>

Example: 10 DrM Rug [1oo]
20 OUTPUT XXX; " :MACHINEl : SLIST:RUNTIL?"

30 ENTER XXX;Ru$

40 PRINT Ru$

50 END

HP 16528/16s38
Programming Reference

SLIST Subsystem
13-17

RUNTil

Command Syntax: :MACHine{112}:SLlStRUNTil <run_until_spec>

where:

<value>

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

::= {OFFI LT, <value> IGT,<value> IINRange,<value>,<value>

IOUTRange, <value>, <value> IEQUal INEQual}

:: = real number from 10E-9 to +9E9

OUTPUT XXX;":MACHINEl:SLIST:RUNTIL GT,800.0E-6"

:MACHine{112}:SLlStRUNTil?

[:MACHine{112}:SLlSt:RUNTil] <run_until_spec> < NL>

10 DIM Ru$ [100J
20 OUTPUT XXX;":MACHINEl:SLIST:RUNTIL?"
30 ENTER XXX;Ru$
40 PRINT Ru$
50 END

SLIST Subsystem
13-17

TAVerage

TAVerage

SLIST Subsystem
13-18

The TAVerage query returns the value of the average time between the X
and O Markers. If the number of valid runs is zero, the query returns
9.9EJi1. Valid runs are tlose where the pattern search for both the X and
O markers was successful, resulting in valid delta-time measurements.

Query Syntax: :MACHine{1 l2}:sLrst:TAVerage?

Retumed FOrmat: [:MACHine{1 l2}:SllStTAVeragel <time_value> <NL>

where:

< time_value > ii = roSl number

Example: 10 DtM Tv$t1ool

20 OUTPUT)OC(; *: MACHINE 1 : SLIST: TAVERAGE?"

30 ENTER rcOqTv$
/m PRINT Tv$

50 END

query

HP 16s28/16538
Programming Relerence

TAVerage

TAVerage query

The TAVerage query returns the value of the average time between the X
and 0 Markers. If the number of valid runs is zero, the query returns
9.9E37. Valid runs are those where the pattern search for both the X and
o markers was successful, resulting in valid delta-time measurements.

Query Syntax: :MACHine{112}:SLlSt:TAVerage?

Returned Format: [:MACHine{112}:SLlSt:TAVerage] <time_value> <NL>

where:

Example:

SLIST Subsystem
13-18

:: = real number

10 DIM Tv$[100]

20 OUTPUT XXX;N:MACHINE1 :SLlST:TAVERAGE?"

30 ENTER XXX;Tv$

40 PRINTTv$

50 END

HP 16528/16538
Programming Reference

TMA)(Imum

TMA)(Imum

HP 16528/16s38
Programming Reference

query

The TMAXim'rn queryreturns the value of the uraximum t'nre between
the X and O Markers. If data is not valid the query returns 9.9E37.

Query Syntax :MACHine{1 l2}:SUSrTMAXmum?

Returned Format: [:MACHine{l l2}:SUStTMAXmuml <timo_value> <NL>

where:

<time valuo > :: = real number

Example: 10 DIU Txg [1oo]
20 0UTPUT XXX; " :MACHINEl : SLIST: TI'IMIt'lUM?"

30 ENTER XXX;Tx$

40 PR I NT Tx$

50 END

SLIST Subsystem
13-19

TMAXimum

TMAXimum

query

The TMAXimum query returns the value of the maximum time between
the X and 0 Markers. Hdata is not valId, the query returns 9.9E37.

Query Syntax: :MACHine{112}:SUStTMAXimum?

Returned Format: [:MACHine{112}:SLlStTMAXimum] <time_value> < NL>

where:

<time_value>

Example:

HP 16528/16538
Programming Reference

:: = real number

10 DIM Tx$ [100J
20 OUTPUT XXX;":MACHINE1:SLIST:TMAXIMUM?"
30 ENTER XXX;Tx$
40 PRINT Tx$
50 END

SLIST Subsystem
13-19

TMlNimum

TMlNimum

Query Syntax:

Returned Format:

query

The TMINimum query returns the value of the minimum time between
the X and O Markers. If data is not valid, the query returns 9.9837.

: MACHine{ 1 | 2} : SLISI:TMlNimum?

[:MACHine{ 1l2I:SLlSt:TMlNimum] <time value > < NL>

where:

<time value > :: = real number

Example: 10 DIr't Tmg [too]
20 0UTPUT XXX ; " :I'IACHINEl : SLIST : TMINIMUI|?"

30 ENTER XXX; Tm$

40 PR I NT Tm$

50 END

SLIST Subsystem
13-20

HP 16s28/16538
Programming Reference

TMINimum

TMINimum query

The TMINimum query returns the value of the minimum time between
the X and 0 Markers. If data is not valid, the query returns 9.9E37.

Query Syntax: :MACHine{112}:SLlSt:TMINimum?

Returned Format: [:MACHine{112}:SLlSt:TMINimum] <time_value> <NL>

where:

<time_value>

Example:

SLIST Subsystem
13-20

:: = real number

10 DIM Tm$ [100]
20 OUTPUT XXX;":MACHINEl:SLIST:TMINIMUM?"
30 ENTER XXX;Tm$
40 PRINT Tm$
50 END

HP 16528/16538
Programming Reference

VRUNs

VRUNs

HP 16s28/16538
Programming Reference

query

The VRUNs query returns the nunber of valid runs and total nunber of
runs made. \,ralid pns are those where the pattern search for both the X
and O markers was suscessful resulting in valid delta time measurements

Query Syntax: :MACHine{l l2}:SLTSTVRUNs?

Returned Format: [:MACHine{112}:SLISIVRUNs] <valid_runs>,<total_runs> <NL>

where:

<valid_runs > :: = zsro or positiv€ integor

<total_runs> :: = zgro or Positive integer

Example: lo Dltrr vrg[roo]
20 0UTPUT XXX;":ilACHIt{El :SLIST:VRUNS?"

30 ENTER XXX;Vr$

40 PRIi{T Vr$

50 EllD

SLIST Subsystem
1&21

VRUNs

VRUNs

query

The VRUNs query returns the number of valid runs and total number of
runs made. Valid runs are those where the pattern search for both the X
and 0 markers was successful resulting in valid delta time measurements.

Query Syntax: :MACHine{112}:SLlSt:VRUNs?

Returned Format: [:MACHine{112}:SLlSt:VRUNs] <valid_runs>, <total_runs> < NL>

where:

< valid_runs>

< total_runs>

Example:

HP 16528/16538
Programming Reference

:: = zero or positive integer

:: = zero or positive integer

10 DIM Vr$ [100]
20 OUTPUT XXX;":MACHINEl:SLIST:VRUNS?"
30 ENTER XXX;Vr$
40 PRINT Vr$
50 END

SLIST Subsystem
13-21

XOTag

XOTag

SLIST Subsystem
13-.22

The XOTag query returns the time from the X to O markers when the
marker mode is tine or number of states from the X to O markers when
the marker mode is state. If there is no data in the time mode the query
returns 9.987. If there is no data in the state node, the query returns
3n67.

Query Syntax: :MACHine{112i:SUSt:XOTag?

Returned Format: [:MACHine{l l2i:SUSTXOTag] {<XO_time> | <Xo_Erates>}<NL>

where:

<XO_time> ::= roal number
<XO_states> :: = integer

Example: 10 DrM xot$ tlool
20 OUTPUT XXX; " :I'IACHINEl : SLIST :XOTAG?"

30 ENTER XXX;Xot$

40 PRINT Xot$

50 END

query

HP 16s28/16s38
Programming Relerence

XOTag

XOTag query

The XOTag query returns the time from the X to 0 markers when the
marker mode is time or number of states from the X to 0 markers when
the marker mode is state. If there is no data in the time mode the query
returns 9.9E37. If there is no data in the state mode, the query returns
32767.

Query Syntax: :MACHine{112}:SLlSt:XOTag?

Returned Format: [:MACHine{112}:SLlSt:XOTag] {<XO_time > I<XO_states> } < NL>

where:

<XO_time>

<XO_states>

Example:

SLIST SUbsystem
13-22

:: = real number

:: = integer

10 DIM Xot$ [100]
20 OUTPUT XXX;":MACHINEl:SLIST:XDTAG?"
30 ENTER XXX;Xot$
40 PRINT Xot$
50 END

HP 16528/16538
Programming Reference

XPATtern

XPATtern

Command Syntax:

where:

< labef_name > :: = string of up to 6 alphanumeric charasters
<labelpattern> :: = "{#B{01 1 lX} . . .

I

#o{0 1 1 12l3 l4 l5 l6l7 lx} . . . I

#Hto l1l2l3 l4 l5l6l7l8 le lA I B lc I D I E I F lx) . . .
I

{011 12l3l4l51617l8ls} . . . }'

Examples: 0UTPUT xXX;":IIACHINE1 :SLIST:XPATTERN',DATA"'255"'
0UTPUT XXX;":I'IACHINEl : SLIST:XPATTERN 'ABC' , '#BXXXXI101 '

HP 16s28/16s38
Programming Reference

command/query

The XPATtern command allows you to construct a pattern recoguzer
term for the X Marker which is then used with the XSEarch criteria when
moving the marker on patterns. Since this command deals with only one
label at a time, a complete specification could require several invocations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recrrgplrzer term. In whatever base
is used, the value must be benveen 0 and 2"" - 1, since a label may not have
more than 32 bits. Because the < labeljattern) pirameter may contain
don't cares, it is handled as a string of characters rather than a number.

The XPATtern query returns the pattern specification for a given label
llame.

:MACHine{1 l2}:SLlSt:XPATtern < label_name), (label3attern >

SLIST Subsystem
1&23

XPATtern

XPATtern

command/query

The XPATtern command allows you to construct a pattern recognizer
te·rm for the X Marker which is then used with the XSEarch criteria when
moving the marker on patterns. Since this command deals with only one
label at a time, a complete specification could require several invocations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern reco~er term. In whatever base
is used, the value must be between 0 and 2 2 - 1, since a label may not have
more than 32 bits. Because the < label-pattern > parameter may contain
don't cares, it is handled as a string of characters rather than a number.

The XPATtern query returns the pattern specification for a given label
name.

Command Syntax: :MACHine{112}:SLlStXPATtern <label_name>,<label-pattern>

where:

< label_name>

< label-pattern>

Examples:

HP 16528/16538
Programming Reference

:: = string of up to 6 alphanumeric characters

::= "{#B{OI1IX}···1
#Q{OI1121314151617IX} ... 1
#H{OI11213141516171819I AIBICIDIEIFIX} ... 1
{OI112131 41516171819} ... }"

OUTPUT XXX;":MACHINEl:SLIST:XPATTERN 'DATA', '255' "
OUTPUT XXX;":MACHINEl:SLIST:XPATTERN 'ABC', 'IBXXXXIIOl' "

SLIST Subsystem
13-23

XPATtern

Query Syntax: :MACHine{l l2}:SUS$GATtem? <label name>

Returned Format [:MAGHine{l |2}:SUStXPATtsrn] <lab€l-name>,<labeljattorn> <NL>

E:<ample: to DIr,r xpg [1oo]
20 OUTPUT XXX; " :l,lACHINEl :SLIST:XPATTERN?'A"'

30 ENTER XXX;Xp$

40 PRINT xp$

50 END

SLIST Subsystem
1*24

HP 16528/16s38
Progra rnming Reference

XPATtern

Query Syntax: :MACHine{112}:SLlStXPATtern? <label_name>

Returned Format: [:MACHine{112}:SLlStXPATtern] <label_name> ,<Iabel.-pattern> <NL>

Example: 10 DIM Xp$ [100]
20 OUTPUT XXX;":MACHINE1:SLIST:XPATTERN? 'A'"
30 ENTER XXX;Xp$
40 PRINT Xp$
50 END

SLIST Subsystem
13-24

HP 16528/16538
Programming Reference

XSEarch

XSEarch command/query

The XSEarch comnand defines the search criteria for the X Marker,
which is then with associated XPATtern recngniznr specification when
moving the markers on patterns. The origin parameter tells the Marker
to begin a search with the trigger or with the start of data. The
occlrrrence parameter determines which occurrence of the XPATtern
rccogilzer specification" relative to the origin, the marker actually
searches for. An occlurence of 0 places a marker on the selected origin.

The XSEarch query returtrs the search criteria for the X marker.

COmmand Syntax: :MACHine{l l2}:SUStXSEarch <occurrence>,<origin>

where:

< o@urrence >
< origin >

HP 16528/16s38
Programming Reference

integer from -1023 to + 1023

{TRlGser ISTARI}

Example: oUTPUT XXX;":MACHINEl :SLIST:XSEARCH +10,TRIGGER"

Query Syntax! :MACHine{1 l2}:SLtSt:XSEarch?

RetUrned FOrmat: [:MACHine{1121:SLlSt:XSEarch] <o@urrenoe},(origin> <NL>

Example: 10 DIr-t xsg [loc]
20 0UTPUT XXX ; " :I'IACHINEl : SLIST :XSEARCH?"

30 ENTER XXX;Xs$

40 PR I NT Xs$

50 Er{D

SLIST Subsystem
1+25

XSEarch

XSEarch

command/query

The XSEarch command defmes the search criteria for the X Marker,
which is then with associated XPATtem recognizer specification when
moving the markers on patterns. The origin parameter tells the Marker
to begin a search with the trigger or with the start of data. The
occurrence parameter determines which occurrence of the XPA Ttem
recognizer specification, relative to the origin, the marker actually
searches for. An occurrence of 0 places a marker on the selected origin.

The XSEarch query returns the search criteria for the X marker.

Command Syntax: :MACHine{112}:SLlSt:XSEarch < occurrence>, < origin>

where:

< occurrence >

<origin>

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

:: = integer from -1023 to +1023

:: = {TRIGger ISTARt}

OUTPUT XXX;":MACHINE1:SLIST:XSEARCH +10,TRIGGER"

:MACHine{112}:SLlSt:XSEarch?

[:MACHine{112}:SLlStXSEarch] <occurrence>, <origin> < NL>

10 DIM Xs$ [100]
20 OUTPUT XXX;":MACHINE1:SLIST:XSEARCH?"
30 ENTER XXX;Xs$
40 PRINT Xs$
50 END

SLIST Subsystem
13-25

XSTate

XSTate

SLIST Subsystem
1S26

The XSTate query returns the line number 1o 6s li5ting where the X
marker resides (LABto + 1023). If data is not valid the query returns
3n67.

Query Syntax: :MACHine{l l2}:SUSrXSTate?

Retumed Format: [:MACHine{ 1 l2}:SLlStXSTate] < state_num > < NL >

where:

< statg num > :: = an integer from -1 023 to + 1023, or 32767

Example: 10 Drttt xsg [1oo]
20 0UTPUT XXX; " :l.lACHINEl : SLIST:XSTATE?"

30 ENTER XXX;Xs$

40 PRINT Xs$

50 END

query

HP 16528116538
Programming Relerence

XSTate

XSTate query

The XSTate query returns the line number in the listing where the X
marker resides (-1023 to + 1023). If data is not valid, the query returns
32767.

Query Syntax: :MACHine{112}:SLlSt:XSTate?

Returned Format: [:MACHine{112}:SLlStXSTate] <state_num> <NL>

where:

< state_num >

Example:

SLIST Subsystem
13-26

:: = an integer from -1023 to +1023, or 32767

10 DIM Xs$[100]
20 OUTPUT XXX;":MACHINE1:SLIST:XSTATE?"
30 ENTER XXX;Xs$
40 PRINT Xs$
50 END

HP 16528/16538
Programming Reference

XTAG

XTAG

HP 16528/16s38
Programming Relerence

command/query

The XTAG co--and specifies the tag value on which the X Marker
should be placed. The tag value is time when t:me taeging is on or states
when state tagging is on.If the data is not valid tagged dat4 no action is
performed.

The XTAG query returns the X Marker position in time when time
tagging is on or in states when state tagging is oq regardless of whether
the marker was positioned in time o1 1fu'errgh a pattern search. If data is

not valid taqged data, the queryreturns 9.9E37 for time tagging 37767 for
s1619lagging.

Command Syntax: :MACHine{1 l2}:SLISIXIAG { <time-value > | <state-value > }

where:

<time_value > ri = r€81 number

< state_value > :: = integer

Example: :0UTPUT XXX ; " : lr,lACHI NEI : SL I ST: XTAG 40. 0E-6"

Query Syntax! :MACHine{1 l2}:SLlSt:),ffAG?

Returned Format: [:MAGHine{112}:SUSIXIAGI {<time_valu€> l<state_value>}<NL>

Example: to Drr't xtg[1oo]
20 OUTPUT XXX; " :MACHINEI : SLIST :XTAG?"

30 ENTER XXX; Xt$

40 PRINT Xt$

50 END

SLIST Subsystem
13-.27

XTAG

XTAG

command/query

The XTAG command specifies the tag value on which the X Marker
should be placed. The tag value is time when time tagging is on or states
when state tagging is on. If the data is not valid tagged data, no action is
performed.

The XTAG query returns the X Marker position in time when time
tagging is on or in states when state tagging is on, regardless of whether
the marker was positioned in time or through a pattern search. Ifdata is
not valid tagged data, the query returns 9.9E37 for time tagging, 32767 for
state tagging.

Command Syntax: :MACHine{112}:SLlSt:XTAG {<time_value> I<state_value>}

where:

< time_value>

< state_value>

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

:: = real number

:: = integer

:OUTPUT XXX;":MACHINEl:SLIST:XTAG 40.0E-6"

:MACHine{112}:SLlSt:XTAG?

[:MACHine{112}:SLlSt:XTAG] {<time_value> I<state_value>} < NL>

10 DIM Xt$ [100]
20 OUTPUT XXX;":MACHINEl:SLIST:XTAG?"
30 ENTER XXX;Xt$
40 PRINT Xt$
50 END

SLIST Subsystem
13-27

SWAVeform Subsystem 14
IntfOdUCtiOn The commands in the State Waveform subslntem allow you to configure

the display so that you can view state data as waveforms on up to Z
channels identified by label name and bit number. The five commands are
analogous to their counterparts in the Timing Waveform subslatem.
However, in this subsystem the x-axis is restricted to representing only
samples (states), regardless of whether time tagging is on or off. As a
result, the only commands which can be used for scaling are DELay and
RANge.

The way to manipulate the X and O markers on the Waveform display is
througb the State Listing (SUS| subsystem. Using the marker conmands
from the SLIST subsystem will affect the markers on the Waveform display.

The commands in the SWAVeform subsystem are:

o ACCumulate
o DELay
o INSert
o RANGe
o REMove

HP 16528'/16538
Programming Reference

SWAVeform Subsystem
1+1

SWAVeform SUbsystem 14
Introduction

HP 16528/16538
Programming Reference

The commands in the State Waveform subsystem allow you to conflgUl"e
the display so that you can view state data as waveforms on up to 24
channels identified by label name and bit number. The five commands are
analogous to their counterparts in the Timing Waveform subsystem.
However, in this subsystem the x-axis is restricted to representing only
samples (states), regardless of whether time tagging is on or off. As a
result, the only commands which can be used for scaling are DELay and
RANge.

The way to manipulate the X and 0 markers on the Waveform display is
through the State Listing (SLISt) subsystem. Using the marker commands
from the SLISt subsystem will affect the markers on the Waveform display.

The commands in the SWAVeform subsystem are:

• ACCumulate
• DELay
• INSert
• RANGe
• REMove

SWAVeform Subsystem
14-1

:S\ilAVef orm ACCumu lote

ACCumu I ote?

DELoy number-of -sornp les

INSer t I obe | -nome

number-of -sornp les

number_o{_samples : integerfrom -1023 to + 1024
label_name : string of up to 6 alphanumeic characters
bit_id : {OWRloyl <bitJtum>}
bit_num : integer representing a lobel bit from 0 to 31

SWAVeform Subsystem
1+2

Figure 1+1. SWAVeform Subsystem Syntax Diagram

HP 16528,116538
Programming Reference

numb e r _0 f _5 amp I e 5 I-------~

REMove 1------------------------.-/
16510501

Dumber_of_samples = integerfrom -1023 to + 1024
label_Dame = string ofup to 6 alphanumeric characters
bit_id = {OVERlay I<bit_num>}
bit_Dum = integer representing a label bit from 0 to 31

Figure 14-1. SWAVeform Subsystem Syntax Diagram

SWAVeform Subsystem
14-2

HP 16528/16538
Programming Reference

SWAVeform

SWAVeform selector

The SWAVeform (State Waveform) selector is used as part of a
compound header to access fte 56ttings in the State Waveform menu. It
always follows the MACHine selector because it selects a branch directly
below the MACHine level in the command tree.

Command Syntax: :MACHine{l l2}:SWAVeform

Example: ouTpuT XXX ; " : HACHI NEz : SWAVEF0RM: RANGE 40"

HP 16528/16538
Programming Relerence

SWAVeform Subsystem
1/t-3

SWAVeform

Command Syntax:

Example:

HP 16528/16538
Programming Reference

SWAVeform

selector

The SWAVeform (State Waveform) selector is used as part of a
compound header to access the settings in the State Waveform menu. It
always follows the MACHine selector because it selects a branch directly
below the MACHine level in the command tree.

:MACHine{112}:SWAVeform

OUTPUT XXX;":MACHINE2:SWAVEFORM:RANGE 40"

SWAVeform Subsystem
14-3

ACCumulate

ACCumulate command/guery

The ACCumulate command allows you to control whether the waveform
display gets erased between individual ru q or whether subsequent
waveforms are allowed to be displayed over the previous waveforms.

The ACCumulate query returns the current ssfting. The query alwap
shows the setting as the character "0" (off) or "1" (on).

Gommand syntax: :MACHine{l12}:swAVeform:Accumutare {{oN | 1} | {oFF I O}}

Example: oUTPUT xxX ; " : l,lAcHINEl : stJAvEFoRM : ACCUT'IULATE 0N"

Query Syntax: MACHine{1 l2}:SWAVeform:AOCumutate?

Returned Format: [MACHine{1 l2}:SWAVeform:AOOumutateJ {0 | 1}<NL>

Example: 10 DIM Stringg [100]
20 OUTPUT XXX ; " : l'lACHINE1 : SIIAVEFORM :ACCUMULATE?"

30 ENTER XXX; Str i ng$

40 PR I NT Str i ng$

50 END

SWAVeform Subsystem
1+4

HP 16528116538
Programming Reference

ACCumulate

ACCumulate

Command Syntax:

Example:

Query Syntax:

Returned Format:

Example:

SWAVeform Subsystem
14-4

command/query

The ACCumulate command allows you to control whether the waveform
display gets erased between individual runs or whether subsequent
waveforms are allowed to be displayed over the previous waveforms.

The ACCumulate query returns the current setting. The query always
shows the setting as the character "0" (oft) or "1" (on).

:MACHine{112}:SWAVeform:ACCumulate {{ON 11} I {OFF I OJ}

OUTPUT XXX;":MACHINE1:SWAVEFORM:ACCUMULATE ON"

MACHine{112}:SWAVeform:ACCumulate?

[MACHine{112}:SWAVeform:ACCumulate] {OI1}<NL>

10 DIM String$[100]
20 OUTPUT XXX;":MACHINE1:SWAVEFORM:ACCUMULATE?"
30 ENTER XXX; StringS
40 PRINT StringS
50 END

HP 16528/16538
Programming Reference

DELay

DEtay

HP 16528/16538
Programming Reference

command/query

The DELay command allows you to speci$ the number sf samples
between t[s timing trigger and the horizontal center of the ssreen for the
waveform display. The allowed number of sanples is from -1023 to
+LOZ..

The DEI-ay query returns the current sanple offset value.

Command Syntax: :MACHine{l l2}:SWAVeform:DELay <number-of-samples>

where:

<number_of_samples> ::= integerfrom -10?3to +1024

E:omple: 0UTPUT XXX;":MACHII{E2:SUAVEFORM:DELAY 127"

Query Syntax: MAGHine{1 l2}:SWAVeform:DELay?

Returned Format: [MACHine{1 l2}:SWAVeform:DEtay] <number_of_eamplos> <NL>

E><ample: 1o DIM strins$ [1oo]
20 oUTPUT XXX ; " :I,IACHINEI : StrAVEFoRlu'l : DELAY?"

30 ENTER XXX; Str i ng$

40 PR I NT Str i ng$

50 END

SWAVelorm Subsystem
14-5

DElay

DElay

command/query

The DELay command allows you to specify the number of samples
between the timing trigger and the horizontal center of the screen for the
waveform display. The allowed number of samples is from -1023 to
+1024.

The DELay query returns the current sample offset value.

Command Syntax: :MACHine{112}:SWAVeform:DELay <number_of_samples>

where:

<number_of_samples>

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

:: = integer from -1023 to + 1024

OUTPUT XXX;":MACHINE2:SWAVEFORM:DELAY 127"

MACHine{112}:SWAVeform:DELay?

[MACHine{112}:SWAVeform:DELay] < number_of_samples > < NL>

10 DIM String$[100]
20 OUTPUT XXX;":MACHINE1:SWAVEFORM:DELAY?"
30 ENTER XXX;String$
40 PRINT StringS
50 END

SWAVeform Subsystem
14-5

lNSert

lNSert

where:

< label_name >

< bit_id >

< bit num >

SWAVeform Subsystem
1+6

:: = string of up to 6 alphanumeric charac'ters

:: = {OVERlay | < bit_num > }
:: : integer representing a label bit from 0 to 31

command

HP 16s28/16538
Programming Reference

The INSert co--and allows you to add waveforms to tle state waveform
display. Waveforms are added from top to bottom on the screen. When
24 waveforms are present, inserting additional waveforms replaces the last
waveform. Bit numbers are zero based, so a label with 8 bits is referenced
as bits 0-7. Speci$ing OVERlay causes a somposite waveform display of
all bits or chennels for the specified label.

COmmand Syntax MAGHineil l2):SWAVeform:lNSert <label-name>,<bit-id>

Examples: oUTPUT XXX ; " : l,lACH I NE l : Sf,lAVEF0Rt'{ : I NSERT 'uJAVE

"
19"

0UTPUT XXX;":MACHINEl :SbJAVEF0RM: INSERT'ABC', 0VERLAY"

0UTPUT XXX; ":l,lACH1 : SbJAV: INSERT 'P001 ' , #81001"

INSert

INSert command

The INSert command allows you to add waveforms to the state waveform
display. Waveforms are added from top to bottom on the screen. When
24 waveforms are present, inserting additional waveforms replaces the last
waveform. Bit numbers are zero based, so a label with 8 bits is referenced
as bits 0-7.. Specifying OVERlay causes a composite waveform display of
all bits or channels for the specified label.

Command Syntax: MACHine{112}:SWAVeform:INSert <Iabel_name>,<bit_id>

where:

<label_name>

<bitJd>

<bit_num>

Examples:

SWAVeform Subsystem
14-6

.. - string of up to 6 alphanumeric characters

.. - {OVERlay 1< bit_num > }

integer representing a label bit from 0 to 31

OUTPUT XXX;":MACHINEl:SWAVEFORM:INSERT 'WAVE', 19"
OUTPUT XXX;":MACHINEl:SWAVEFORM:INSERT 'ABC', OVERLAY"
OUTPUT XXX;":MACHl:SWAV:INSERT 'POOl', #Bl001"

HP 16528/16538
Programming Reference

RANGe

RANGe

HP 16528/16s38
Programming Reference

command/query

The RANGe comnand allows you to speciS the number 6f s,amples
across the screen on the State Waveform display. It is equivalent to tetr
times the states per division setting (st/Div) on the front panel. A number
between 1.0 and 10240 maybe entered.

The RANGe query returns the current 1r"ge value.

Command Syntax: MACHine{1 | 2}:SWAVelorm:MNGe < number_of_samples >

where:

< number of .samples > :: = integer from 10 to 1O24O

Example: oUTPUT XXX;":lrlACHINEZ:St'tAVEFoRti,t:RANGE 80"

Query Syntax: MAGHine{1 l2}:SWAVelorm:RANGe?

Returned Format: [MACHine{l l2}:SWAVeform:RANGe] <number_of samples> <NL>

Example: 10 DIM Str ins$ [1oo]
20 0UTPUT XXX; " :MACHINEz : SITAVEFORi'|:RANGE?"

30 ENTER XXX; String$
40 PRINT String$
50 END

SWAVeform Subsystem
1+7

RANGe

RANGe

command/query

The RANGe command allows you to specify the number of samples
across the screen on the State Waveform display. It is equivalent to ten
times the states per division setting (stlDiv) on the front panel. A number
between 10 and 10240 may be entered.

The RANGe query returns the current range value.

Command Syntax: MACHine{112}:SWAVeform:RANGe <number_of_samples>

where:

< number_of_samples>

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

:: = integer from 10 to 10240

OUTPUT XXX;":MACHINE2:SWAVEFORM:RANGE 80"

MACHine{112}:SWAVeform:RANGe?

[MACHine{112}:SWAVeform:RANGe] < number_of_samples > < NL>

10 DIM String$[100]
20 OUTPUT XXX;":MACHINE2:SWAVEFORM:RANGE?"
30 ENTER XXX; String$
40 PRINT String$
50 END

SWAVeform Subsystem
14-7

REMove

REMove

SWAVeform Subsystem
l tt-8

The REMove command allows you to clear the waveform display before
building a new display.

COmmand Syntax: :MACHine{1 l2}:SWAVeform:REMove

Example: oUTPUT xxX; ": MACHINEl : SI'IAVEFoRI'I: REI{0VE"

command

HP 16528/16s38
Programming Reference

REMove

REMove

Command Syntax:

Example:

SWAVeform Subsystem
14-8

command

The REMove command allows you to clear the waveform display before
building a new display.

:MACHine{112}:SWAVeform:REMove

OUTPUT XXX;":MACHINE1:5WAVEFORM:REMOVE"

HP 16528/16538
Programming Reference

SCHart Subsystem 15
Introduction

HP 16529.,/16538
Programming Reference

The State Chart subsystem provides the commands necessary for
programming the HP L652Bl53B's Chart display. The commands allow
you to build charts of label activity, using data normally found in the
Listing display. The chart's y-a:ris is used to show data values for the label
of your choice. The x-aris mn be used in two different ways. In one, the
x-axis represents states (shown as rows in the State Listing display). In the

other, the x-axis represents the data values for another label. When states

are plotted along the x-a,xis, X and O markers are available. Since the
State Chart display is simply ao alternative way of looking at the data in
the State Listhg, the X and O markers can be manipulated through the

SLIST subsystem. In fact, because the prograrnming commands do not
force the menus to switch, you can position the markers in the SLIST

subsystem and see the effects in the State Chart display.

The commands in the SCHart subsvstem iue:

. ACCumulate
o HAXis
o VAXis

SCHart Subsystem
15-1

SCHart SUbsystem 15
Introduction The State Chart subsystem provides the commands necessary for

programming the HP 1652B/53B's Chart display. The commands allow
you to build charts of label activity, using data normally found in the
Listing display. The chart's y-axis is used to show data values for the label
of your choice. The x-axis can be used in two different ways. In one, the
x-axis represents states (shown as rows in the State Listing display). In the
other, the x-axis represents the data values for another label. When states
are plotted along the x-axis, X and 0 markers are available. Since the
State Chart display is simply an alternative way of looking at the data in
the State Listing, the X and 0 markers can be manipulated through the
SLISt subsystem. In fact, because the programming commands do not
force the menus to switch, you can position the markers in the SLISt
subsystem and see the effects in the State Chart display.

The commands in the SCHart subsystem are:

HP 16528/16538
Programming Reference

•
•
•

ACCumu1ate
HAXis
VAXis

SCHart SUbsystem
15-1

ACCumu ! ote

ACCumu I ote?

stote-low-voiue

lobe l-nome I

I obe I -h i gh-vo I ue

s to te-h i gh-vo I ue

lobel-low-volue

spoce high-volue

stat€_low_yalue : integer from -1023 to + 1024

stat€_high_value : integerfrom <state_low_value> to + 1024

label_name : a string of up to 6 alphanumeric characten
label-tow-value : string from 0 6 f2 - I (#HFFFFFFF|)
label_high_value : stringfron2^<label_low_value> to fo - I (#HFFFFFFFF)
low_value : string from 0 to t'' - I (#HFFFFFFFF)
high_value : stringfrom < low value> to fn - I (#HFFFFFFFF)

Figure 1$1. SCHart Subsystem Syntax Diagram

SCHart Subsystem
1*2

HP 16528/16538
Programming Reference

label_low_value

label_high_value

18510503
VAX i s? ~---------------------------

state_low_value = integerfrom -1023 to + 1024
state_high_value = integerfrom <state_low_value> to +1024
label_name = a string ofup to 6 alphanumeric characters
labetlow_value = stringfrom 0 to z32 -1 (#HFFFFFFFFl
label_high_value = stringfrom < label_low_value> to z3 -1 (#HFFFFFFFF)
low_value = stringfrom 0 to z32 -1 (#HFFFFFFFF)
high_value = stringfrom < low_value> to z32 -1 (#HFFFFFFFF)

Figure 15-1. SCHart Subsystem Syntax Diagram

SCHart Subsystem
15-2

HP 16528/16538
Programming Reference

SCHart

SCHart

Command Syntax:

Example:

selector

The SCHart selector is used as part of a compound header to access the
ssttings found in the State Chart menu. It always follows the MACHine
selector because it selects a branch below the l\dr{CHine level in the
@mmand tree.

: MACHine{ 1 l2}:SCHart

OUTPUT XXX;":MACHINEl:SCHART:VMIS'A','0','9"'

HP 16s28/16538
Programming Reference

SCHart Subsystem
1$3

SCHart

SCHart

selector

The SCHart selector is used as part of a compound header to access the
settings found in the State Chart menu. It always follows the MACHine
selector because it selects a branch below the MACHine level in the
command tree.

Command Syntax: :MACHine{112}:SCHart

Example: OUTPUT XXX;":MACHINEl:SCHART:VAXIS 'A', '0', '9'"

HP 16528/16538
Programming Reference

SCHart Subsystem
15-3

ACCumulate

ACCumulate command/query

Ihe ACCumulate command allows you to control whether the chart

fffifl ff;:ffi :i:fl :T""trl,"Tf Hl*il:ffi1"*r"il?;H:'
Ihe ACCumulate query returns the current setting. The query alwap
shows the setting as the character "0" (off) or "1" (on).

command syntax: MACHine{1|2}:scHarrAocumulare i{ON I 1} | {OFF | 0}}

b<ample: oUTPUT XXX; " :MACHINEl : SCHART:ACCUMULATE oFF"

Query Syntax: MACHine{112]1:SGHart:AOCumutate?

Returned Format: [MACHine{l l2}:SOHart:AcOumulate] t0 | 1}<NL>

Example: 1o DIM str i ng$ [1oo]
20 OUTPUT XXX; " : MACHI NE1 : SCHART: ACCUMULATE?"

30 ENTER XXX; Str i ng$

40 PRINT String$
50 END

SGHart Subsystem
15-t4

HP 16s28/16538
Programming Relerence

ACCumulate

ACCumulate

Command Syntax:

Example:

Query Syntax:

Returned Format:

Example:

SCHart Subsystem
15-4

command/query

The ACCumulate command allows you to control whether the chart
display gets erased between each individual run or whether subsequent
waveforms are allowed to be displayed over the previous waveforms.

The ACCumulate query returns the CWTent setting. The query always
shows the setting as the character "0" (off) or "1" (on).

MACHine{112}:SCHart:ACCumulate {{ON 11} I {OFF IO}}

OUTPUT XXX;":MACHINE1:SCHART:ACCUMULATE OFF"

MACHine{112}:SCHart:ACCumulate?

[MACHine{112}:SCHart:ACCumulate] {O I 1} < NL>

10 DIM String$[lOO]
20 OUTPUT XXX;":MACHINE1:SCHART:ACCUMULATE?"
30 ENTER XXX; String$
40 PRINT String$
50 END

HP 16528/16538
Programming Reference

HA)fis

HAX|s command/query

The HAXis command allows you to select whether states or a label's
values will be plotted on the horizontal axis of the chart. The axis is scaled
by specifying the high and low values.

,lCl The shortform for STATES is STA. This is an intentional deviation from
NOtg ia the normai runctarion ruies.

The HAXis query returns the current horizontal axis label assignment and
scaling.

Command Syntax: MACHine{112}:SCHart:HMis {STATES,<state_low_value>,<state_high_vatue> |

< label_name >, < iabel_low_value >, < label_high_value >)

where:

< state_low_value > :: = integer from -1023 to 1024

< state_high_value > :: = integer f rom < state_low_value > to + 1024

< label_name > ::: a string of up to 6 alphanumeric characters

< fabel_low_value > :: = string from 0 to 2a-1 (#HFFFFFFFR

< fabel_high_value > :: = string from < label_low_value > to 232-1 (#HFFFFFFFR

Examples: 0UTPUT XXX; " :MACHINEl : SCHART:HAXiS STATES, -100, 100"

0UTPUT XXX;":MACHINEl :SCHART:HAXIS'DATA','100','511 "'

HP 16s28/16538
Programming Reference

SCHart Subsystem
1 5-5

HAXis

I
Note"

HAXis

command/query

The HAXis command allows you to select whether states or a label's
values will be plotted on the horizontal axis of the chart. The axis is scaled
by specifying the high and low values.

The shortform for STATES is STA. This is an intentional deviation from
the normal trunctation rilles.

The HAXis query returns the current horizontal axis label assignment and
scaling.

Command Syntax: MACHine{112}:SCHart:HAXis {STATES,<state_low_value>,<state_high_value> I
< label_name> ,< iabelJow_value> ,< label_high_value> }

where:

< state_low_value>

< state_high_value >

< label_name>

< label_low_value>

< label_high_value >

Examples:

HP 16528/16538
Programming Reference

:: = integer from -1023 to 1024

:: = integer from < stateJow_value> to + 1024

:: = a string of up to 6 alphanumeric characters

:: = string from 0 to 232-1 (#HFFFFFFFF)

:: = string from < label_low_value> to 232_1 (#HFFFFFFFF)

OUTPUT XXX;":MACHINE1:SCHART:HAXIS STATES, -100, 100"
OUTPUT XXX;": MACHINE1: SCHART: HAXIS I DATA I, '100', '511 '"

SCHart Subsystem
15-5

HA)fis

Query Syntax: MACHine{i l2}:SCHarr:FlAXs?

Retumed Format: [tvlACHine{112}:SCFlartl-tAXs] {STATES,<Etate_low_vatue>,<srate high_vatue> |

< label_name >, < label_low_value >, < lab€l_high_value >)

Example: to DIU Strinsg [loo]
20 0UTPUT XXX; " :MACHINEI : SCHART : HAXIS?"

30 ENTER XXX ; Str i ng$

40 PRINT String$
50 END

SCHart Subsystem
15-6

HP 16s28/16538
Programming Reference

HAXis

Query Syntax:

Returned Format:

Example:

SCHart SUbsystem
15-6

MACHine{112}:SCHart:HAXis?

[MACHine{112}:SCHart:HAXis] {STATES, <state_low_value> I <state_high_value > I
< label_name>, < label_low_value>, < label_high_value > }

10 DIM String$[100]
20 OUTPUT XXX;":MACHINEl:SCHART:HAXIS?"
30 ENTER XXX; StringS
40 PRINT StringS
50 END

HP 16528/16538
Programming Reference

VA)ffs

VA)fis

Command Syntax:

where:

< label_name >
< low_value >

< high_value >

Examples:

HP 16528116538
Programming Reference

Query Syntax: MACHine{1 l2}:SCHarrV$G?

Returned Format: 0vlAcHine{l l2}:SCHartVAXsl <labet_name>,<low_vatue>,<high_value> <NL>

Erample: 10 DIt',t Stringg [100]
20 0UTPUT XXX ; " :I-IACHINEl : SCHART : VA,\IS?"

30 ENTER XXX; Str i ng$

40 PRINT String$
50 IND

command/query

The VAXis command allows you to choose which label will be plotted on
the vertical a:ds of the chart and scale the vertical ilds by specifying the
hrgh value and low value.

The VAXis query returns the current vertical axis label assignment and
scaling.

MACHine{ 1 | 2}:SCHart:VAXis < label_name) , (low_valuo) , < high_value >

i I = 8 string of up to 6 alphanumeric characters

::= string from 0 to *-t (#HFFFFFFFR

:: = string from < low_value > to *-t (#HFFFFFFFF)

OUTPUT XXX;":MACHINEz:SCHART:VAXIS'SUMI','0','99'o'
OUTPUT XXX;":I'IACHINEl :SCHART:VAXIS'BUS','#H00FF','#H0500"'

SCHart Subsystem
1*7

VAXis

VAXis

command/query

The VAXis command allows you to choose which label will be plotted on
the vertical axis of the chart and scale the vertical axis by specifying the
high value and low value.

The VAXis query returns the current vertical axis label assignment and
scaling.

Command Syntax: MACHine{112}:SCHart:VAXis <label_name>,<low_value>,<high_value>

where:

< label_name>

<low_value>

< high_value>

Examples:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

:: = a string of up to 6 alphanumeric characters

:: = string from 0 to ~-1 (#HFFFFFFFF)

:: = string from <low_value> to ~-1 (#HFFFFFFFF)

OUTPUT XXX;": MACHINE2: SCHART: VAXIS ' SUMI " ,0', '99 to,

OUTPUT XXX;": MACHINEl: SCHART: VAXIS ' BUS', "HOOFF', "HOSOO '"

MACHine{112}:SCHart:VAXis?

[MACHine{112}:SCHart:VAXis] < label_name>, < low_value>, < high_value> < NL>

10 DIM String$[lOO]

20 OUTPUT XXX;":MACHINE1:SCHART:VAXIS?"

30 ENTER XXX; String$

40 PRINT String$

50 END

SCHart Subsystem
15-7

COMPare Subsystem 16
Introduction

HP 1652B,116s38
Programming Reference

Commands in the state COMPare subsystem provide the ability to do a
bit-by-bit comparison between the acquired state data listing and a

compare data image. The commands are:

o COPY
o DATA
. CMASk
o RANGe
. RUNTiI
o FIND

COMPare Subsystem
1S1

COMPare SUbsystem 16
Introduction

HP 16528/16538
Programming Reference

Commands in the state COMPare subsystem provide the ability to do a
bit-by-bit comparison between the acquired state data listing and a
compare data image. The commands are:

• COpy
• DATA
• CMASk
• RANGe
• RUNTil

• FIND

COMPare Subsystem
16-1

core_speclobe l-nome

I obe l-nome

doto-ootternI obe l-n ome

doto-pottern

RANGe ?

RUNTiI?

label_name : string of up to 6 characten
cane_spec : string of characten ''t * | .)...

u

* : core

. : don't care

line_num : integer from -1023 to + 1023

data_pattem : .{#B{01 / lX} . . .
I

#Q{olll2lsl4lsl6l7lxI . . .
I

#H{|lll2l3l4lsl6l7l8lelAlBlclD I ElFlx} . . .
I

{oll12l314lsl617l8le} . . . }''
difference_occunence = integer from I to 1024

start_line : integer from -1023 to + 1023

stop_line : integerfro^ <start_line> to + 1023

Figure 1&1. COMPare Subsystem Syntax Diagram

COMPare Subsystem
1el2

HP 16528.116538
Programming Reference

RUNT i I? ~---------------------------'
16518S82

label_name = string ofup to 6 characters
care_spec = string ofcharacters "{ * I. }... "
* = care
. = don't care
line_num = integerfrom -1023 to + 1023
dataj)attern = "{#B{OllIX} I

#Q{01112131 4/516/7/X} I
#H{011121314/5/6171819IA IBICIDIEIFIX} ... I
{0111213141516171819} ... }"

difTerence_occurence =integerfrom 1 to 1024
start_line = integerfrom -1023 to + 1023
stop_line = integerfrom < start_line> to + 1023

Figure 16-1. COMPare Subsystem Syntax Diagram

COMPare Subsystem
16-2

HP 16528/16538
Programming Reference

COMPare

COMPare

HP 16s28/16s38
Programming Reference

The COMPare selector is used as part of a compound header to access
the settings found in the Compare menu. It alwap follows the MACHine
selector because it selects a branch directlv below the MACHine level in
the conmand tree.

Command Syntax: :MAGHine{l l2}:GOMPare

b<ample: oUTPUT xxx; ":I'{ACHINEl:CoMPARE: FIND? 819"

selector

COMPare Subsystem
1&3

COMPare

Command Syntax:

Example:

HP 16528/16538
Programming Reference

COMPare

selector

The COMPare selector is used as part of a compound header to access
the settings found in the Compare menu. It always follows the MACHine
selector because it selects a branch directly below the MACHine level in
the command tree.

:MACHine{112}:COMPare

OUTPUT XXX;":MACHINE1:COMPARE:FIND? 819"

COMPare Subsystem
16-3

CMASK

CMASK

Command Syntax:

where:

command/query

The CMASk (Compare Mask) command allows you to set the bits in the
chattnel mask for a gtven label in the compare listing image to "compares"
orttdontt compares.t'

The CMASk query returns the state of the bits in the channel mask for a
glven label in the compare listi"g image.

MACHine{1 l2}:COMPare:CMASk < label_narne }, (care_spec >

a string of up to 6 alphanumeric charac,ters

string of charasters o{*1.}..." (32 charac,ters mo<imum)

care

don't care

HP 16528/16538
Programming Reference

< label_name > !i =
< care_spec > :: =

*

Example: oUTPUT xxX; " : t'tACHI NE2 : C0MpARE : CMASK 'STAT ' ,

Query Syntax: MACHine{l l2}:GOMPare:CMASk? < tabet name >

Retumed Format: [MACHineil l2]:GOMPare:CMASkl <label_name>,<care-spec> <NL>

Example: 10 Dll,l String$[100]
20 OUTPUT XXX ; " :I,IACHINEZ : C0i'IPARE : Ci'IASK?'P005 "'
30 ENTER XXX; String$
40 PRINT String$
50 END

COMPare Subsystem
1H

CMASk

CMASk command/query

The CMASk (Compare Mask) command allows you to set the bits in the
channel mask for a given label in the compare listing image to "compares"
or "don't compares."

The CMASk query returns the state of the bits in the channel mask for a
given label in the compare listing image.

Command Syntax: MACHine{112}:COMPare:CMASk <Iabel_name>,<care_spec>

where:

< label_name>

< care_spec>

*

Example:

Query Syntax:

Returned Format:

Example:

COMPare SUbsystem
16-4

:: = a string of up to 6 alphanumeric characters

:: = string of characters "{*I.} ... II (32 characters maximum)

:: = care
:: = don't care

OUTPUT XXX;":MACHINE2:COMPARE:CMASK 'STAT', '*.** .. **'"

MACHine{112}:COMPare:CMASk? < label_name>

[MACHine{112}:COMPare:CMASk] <label_name> ,<care_spec> <NL>

10 DIM String$[100]
20 OUTPUT XXX;";MACHINE2:COMPARE:CMASK? 'PODS'"
30 ENTER XXX; String$
40 PRINT String$
50 END

HP 16528/16538
Programming Reference

COPY

COPY

HP 16s2Bl16538
Programming Reference

The COPY comnand copies the current acquired State Listing for the
specified machine into the Compare ListinC template. It does not affect
ttre compare rarge or channel mask settings.

Command Syntax: MAGHine{112}:COMPare:COPY

command

COMPare Subsystem
1&5

COpy

Command Syntax:

Example:

HP 16528/16538
Programming Reference

COpy

command

The COpy command copies the current acquired State Listing for the
specified machine into the Compare Listing template. It does not affect
the compare range or channel mask settings.

MACHine{112}:COMPare:COPY

OUTPUT XXX;":MACHINE2:COMPARE:COPY"

COMPare Subsystem
16-5

DATA

DATA

COMPare Subsystem
1&6

command/query

The DATA comnand allows you to edit the compare listing image for a
given label and state row. When DATA is sent to an instrment where no
oompare image is defined (such as at power-up) all other data in the
image is set to don't cares.

Not specifing the < label-name > parameter allovn you to write data
patterns to more than one label for the given line number. The first
pattern is placed in the left-most label, with the following patterns being
placed in a left-to-right fashion (as seen on the Compare display).
Specifying more patterns than there are labels simply results in the extra
patterns bing ignored.

Because don't cares ()G) are allowed in the data pattern, it must always

be expressed as a string. You may still use different bases, though don't
cares cannot be used in a decimal number.

The DATA query retuns the value of the compare listi"g image for a
given label and state row.

Command Syntax: MACHine{l12}:COMParo:DATA {<label-name>,<line-num>,<data-pattern> |

< lin€-num > , < dataJtattsrn > [, < dataltattsrn >].'.]

where:

<label_name> t!= I string of up 6 alphanumeric charasters

< line_num > :: = integer from -1023 to + 1023

<datapattern> ::= "{#B{0f 1lX}... I

#o{ol1 12l314l5l617lx} " . . I

#H{0lll2lsl4lsl6lTlslelAlBlclDIElFlx} . . . I

{ol1 l2131415161718le} . . . }"

Examples: oUTPUT xxx;":I'IACHINE2:C0I{PARE:DATA'CLoCK" 42, '#B01lxl01X"'
OUTPUT XXX:":MACHINEZ:C0lilPARE:DATA'0UT3', 0,'#HFF40'"
OUTPUT XXX; " :MACHIfIEI :COi'IPARE : DATA 129,'#BXX00','#81101','#BlOXX''
0UTPUT XXX;":l,lACHZ:C0I.|PARE:DATA -511 , '4', '64'. '16', 256', '8', '16'"

HP 16s28/16538
Programming Reference

DATA

DATA command/query

The DATA command allows you to edit the compare listing image for a
given label and state row. When DATA is sent to an instrument where no
compare image is defmed (such as at power-up) all other data in the
image is set to don't cares.

Not specifying the < label_name> parameter allows you to write data
patterns to more than one label for the given line number. The fIrst
pattern is placed in the left-most label, with the following patterns being
placed in a left-to-right fashion (as seen on the Compare display).
Specifying more patterns than there are labels simply results in the extra
patterns being ignored.

Because don't cares (Xs) are allowed in the data pattern, it must always
be expressed as a string. You may still use different bases, though don't
cares cannot be used in a decimal number.

The DATA query returns the value of the compare listing image for a
given label and state row.

Command Syntax: MACHine{112}:COMPare:DATA {<Iabel_name>,<line_num>,<data_pattern> I
< line_num > ,< data_pattern> [, < data-pattern>]... }

where:

<label_name>

<line_num>

< data.J>attern >

Examples:

COMPare Subsystem
16-6

:: = a string of up 6 alphanumeric characters

:: = integer from -1023 to + 1023

:: = "{#B{OI 11X} ... I

#Q{OI112131 4 151617IX} ... I

#H{OI112131 4 1516171819IAIBICIDIEIFIX} ... I
{OI11213141516171819} ... }"

OUTPUT XXX;":MACHINE2:COMPARE:DATA 'CLOCK', 42, '#B011X101X'"

OUTPUT XXX;":MACHINE2:COMPARE:DATA 'OUT3', 0, '#HFF40'"

OUTPUT XXX;":MACHINE1:COMPARE:DATA 129, 'IBXXOO', '#B1101', '#B1QXX'"

OUTPUT XXX;":MACH2:COMPARE:DATA -511, '4', '64', '16', 256', '8', '16'"

HP 16528/16538
Programming Reference

DATA

Query Syntax: MACHine{1 l2}:COMPare:DATA? < label name) , (line_num >

Returned Format: [MACHine{1 l2}:COMPare:DATAI
< label_name), (line_num), (datapattern > < NL>

Ercmple: l0 DIi,t Labe lg [6] . Response$ [80J

15 PRINT "This program shows the values for a signal's Compare listing"
20 IIIPUT "Enter signal label: ". Label$
25 0UTPUT XXX;":SYSTEM:HEADER OFF" lTurn headers off (from responses)
30 OUTPUT XXX;":iIACHI1{E2 :C0i,|PARE:RANGE?"

35 EI{TER XXX; First, Last lRead in the range's end-points
40 PRII{T "LINE #". "VALUE of "; Label$
45 FOR State = F'irst T0 Last lPrint compare value for each state
50 OUTPUT XXX;":l'lACHZ:C0|!{PARE:DATA? "' & Label$ & "'," & VAL$(State)

55 ENTER XXX; Response$

50 PRII{T State, Response$

65 i{EXT State
70 END

HP 16528/16538
Programming Reference

COMPare Subsystem
16--7

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

DATA

MACHine{112}:COMPare:DATA? < label_name>, < line_num >

[MACHine{112}:COMPare:DATA]

<label_name>, <line_num >, <dataJ'attern > < NL>

10 DIM Label$[6] , Response$[80]
15 PRINT "This program shows the values for a signal's Compare listing"
20 INPUT "Enter signa 1 labe 1: ", Labe 1$
25 OUTPUT XXX;":SYSTEM:HEADER OFF" !Turn headers off (from responses)
30 OUTPUT XXX;":MACHINE2:COMPARE:RANGE?"
35 ENTER XXX; First, Last !Read in the range's end-points
40 PRINT "LINE II", "VALUE of "; Label$
45 FOR State = First TO Last !Print compare value for each state
50 OUTPUT XXX;":MACH2:COMPARE:DATA? '" & Label$ & 'tf," & VAL$(State)
55 ENTER XXX; Response$
60 PRINT State, Response$
65 NEXT State
70 END

COMPare Subsystem
16-7

FIND

FIND

COMPare Subsystem
16-8

query

The FIND query is used to get the line number of a specified difference
occurence (first, second third, etc) within the current compare rrnge, as

dictated by the RANGe command (see RANGc). A difference is counted
for each line where at least one ofthe curreDt labels has a discrepancy
between its acquired state data listing and its compare data irnage.

Invoking the FIND query updates both the Listing and Compare displays
so that the line number returned is in the center of tle screen.

Query Syntax: MAGH|ne{1 l2}:COMPare:FIND? <differenoe_oocurronoe>

Returned Format: [MACHine{1 l2}:COMPare:FIND] <differenct_occurrenoe>, <line_number> <NL>

where:

<difforoncs_occurrenoe > :: = integer trom 0 to 1024

<line number> ::= integerlrom -1023to +1023

Example: 10 DIM Strins$ [1oo]
20 0UTPUT XXX; " :I,{ACHINE2 :COMPARE : FIND? 26"

30 ENTER -'XXX; Str i ng$

40 PRINT String$
50 END

HP 16s28/16s38
Programming Reference

FIND

FIND query

The FIND query is used to get the line number of a specified difference
occurence (fIrst, second, third, etc) within the current compare range, as
dictated by the RANGe command (see RANGe). A difference is counted
for each line where at least one of the current labels has a discrepancy
between its acquired state data listing and its compare data image.

Invoking the FIND query updates both the Listing and Compare displays
so that the line number returned is in the center of the screen.

Query Syntax: MACHine{112}:COMPare:FIND? <difference_occurrence>

Returned Format: [MACHine{112}:COMPare:FIND] <difference_occurrence>, <line_number> <NL>

where:

< difference_occurrence >

< line_number>

Example:

COMPare Subsystem
16-8

:: = integer from 0 to 1024

:: = integer from -1023 to + 1023

10 DIM String$[100]
20 OUTPUT XXX;":MACHINE2:COMPARE:FIND? 26"
30 ENTER~XXX; String$
40 PRINT String$
50 END

HP 16528/16538
Programming Reference

RANGe

RANGe

Command Syntax:

command/query

The RAI{Ge command allows you to define the boundaries for the
comparison. The range entered must be a subset of the lines in the
aquisition memory.

The RANGe query returns the current boundaries for the comparison.

MACHine{1 l2}:COMPare:MNGe {FULL I PARTial, < start_line >, < stop_tine > }

where:

< start_line >
< stop_line >

Examples:

Query Syntax:

Returned Format:

integer from -1023 to + 1023

integer from < start line > to + lOZg

0UTPUT xxX ; " :I'IACHINEz :C0MPARE :RANGE PARTIAL, -511, 512"
OUTPUT XXX;

.'
: MACHI NEz : COMPARE : RANGE FULL''

MACHine{ 1 | 2} :COMPare: RANGe?

[MACHine{1 l2}:CoMPare:MNGeJ TFULL I PARTiat, <starr_rine >,
<stop_line>)<NL>

Example: 1o Drt,t Stringg [too]
20 0UTPUT XXX; " : MACHI NE4: C0MPARE : RANGE?"

30 ENTER XXX; String$
40 REt-'l See if substring "FULL" occurs
50 PRINT "Range is ";
60 IF POS(String$,"FULL")
70 END

in response string:

"Full" ELSE PRINT "Partial"

HP 16528/16s38
Programming Reference

COMPare Subsystem
1&9

RANGe

RANGe

command/query

The RANGe command allows you to derme the boundaries for the
comparison. The range entered must be a subset of the lines in the
aquisition memory.

The RANGe query returns the current boundaries for the comparison.

Command Syntax: MACHine{112}:COMPare:RANGe {FULL I PARTial, <start_line>, <stopJine > }

where:

< start_line>

< stopJine >

Examples:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

:: = integer from -1023 to + 1023

:: = integer from < start_line> to + 1023

OUTPUT XXX;":MACHINE2:COMPARE:RANGE PARTIAL, -511, 512"
OUTPUT XXX;":MACHINE2:COMPARE:RANGE FULL"

MACHine{112}:COMPare:RANGe?

[MACHine{112}:COMPare:RANGe] {FULL I PARTial, <start_line>,

<stopJine>} < NL>

10 DIM String$[100]
20 OUTPUT XXX;":MACHINE4:COMPARE:RANGE?"
30 ENTER XXX; String$
40 REM See if substring "FULL" occurs in response string:
50 PRINT "Range is ";
60 IF POS(String$,"FULL") > 0 THEN PRINT "Full" ELSE PRINT "Partial"
70 END

COMPare Subsystem
16-9

RUNTiI

RUNTiI

COMPare Subsystem
16-10

command/query

The RUNTil (run until) command allows you to define a stop condition
when the trace mode is repetitive. Specifying OFF causes the analyzer to
make runs until either the display's STOP field is touched or the STOP
command is issued.

There are four conditions based on the time between the X and O
markers. Using this difference in the condition is effective only when time
tags have been turned on (see the TAG command in the STRace
subsystem). These four conditions are as follows:

o The difference is less than (LT) some value.
o The difference is greater than (GT) some value.
o The difference is inside some range (INRange).
o The dilference is outside some range (OUTRange).

End points for the INRange and OUTRange should be at least 40 ns apart.

There are two conditions which are based on a comparison of the

acquired state data and the compare data i-age. You can run until one of
the following conditions is true:

o Compare equal (EOUal) - Every chat'"el of every label has the

same value.
o Compare not equal (NEQual) - Any cha'tnel of any label has a

different value .

The RUNTiI query returns the current stop criteria for the comparison
when lsnning in repetitive trace mode.

,fA The RUNTiI instruction (for state analpis) is available in both the SLIST
NOtg It and COMPare subsvstems.

HP 16528.116538
Programming Reference

RUNTil

RUNTil

I
Note 'II

COMPare Subsystem
16-10

command/query

The RUNTil (run until) command allows you to defme a stop condition
when the trace mode is repetitive. Specifying OFF causes the analyzer to
make runs until either the display's STOP field is touched or the STOP
command is issued.

There are four conditions based on the time between the X and a
markers. Using this difference in the condition is effective only when time
tags have been turned on (see the TAG command in the STRace
subsystem). These four conditions are as follows:

• The difference is less than (LT) some value.
• The difference is greater than (GT) some value.
• The difference is inside some range (INRange).
• The difference is outside some range (OUTRange).

End points for the INRange and OUTRange should be at least 40 ns apart.

There are two conditions which are based on a comparison of the
acquired state data and the compare data image. You can run until one of
the following conditions is true:

• Compare equal (EQUal) - Every channel of every label has the
same value.

• Compare not equal (NEQua!) - Any channel of any label has a
different value .

The RUNTil query returns the current stop criteria for the comparison
when running in repetitive trace mode.

The RUNTil instruction (for state analysis) is available in both the SLISt
and COMPare subsystems.

HP 16528/16538
Programming Reference

RUNTiI

Gommand syntax: MACHine{l12}:coMpare:RuNTit {oFFlLT,<vatue> lGT,<vatue> |

lNRange, <value >, <value > lOUTRange, <value >, <value > lEOUallNEAual)

EXAMPIE: OUTPUT XXX;'':I,IACHINE2:COMPARE:RUNTIL EQUAL''

Query Syntax: MACHine{1 l2}:COMpare:RUNTit?

Returned FOrmat: [MACHine{112}:COMPare:RUNTil] {OFF lLT,<vatue> lGT,<value> |

lNFange, < value >, < value > | OUTRange, < value >, < value > | EOUaI I NEQud) < NL >

Example: 10 DIM Strinsg [1oo]
20 OUTPUT XXX; " :MACHINEz :C0I'IPARE :RUNTIL?"

30 ENTER XXX ; Str i ng$

40 PRINT String$
50 END

HP 16528/16s38
Programming Reference

COMPare Subsystem
1&1 1

Command Syntax:

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

RUNTil

MACHine{112}:COMPare:RUNTii {OFFILT,<value> IGT, <value > I
INRange, < value> ,< value> IOUTRange, < value> ,<value> IEQUal INEQual}

OUTPUT XXX;":MACHINE2:COMPARE:RUNTIL EQUAL"

MACHine{112}:COMPare:RUNTiI?

[MACHine{112}:COMPare:RUNTiI] {OFF ILT,<value> IGT,<value> I
INRange, <value>, <value> IOUTRange, <value>, <value> IEQUal INEQual} < NL>

10 DIM String$[100]
20 OUTPUT XXX;":MACHINE2:COMPARE:RUNTIL?"
30 ENTER XXX; String$
40 PRINT String$
50 END

COMPare Subsystem
16-11

TFORmat Subsystem 17
Introduction The TFORmat subsystem soalains the co--ands available for the Timi"g

Format menu in the HP 16528,1538 logic analyer. These commands are:

. I-ABel
o REMove
o THReshold

<N> - ul2l3l4ls\
name = stringof up to 6 alphanumeric characterc
polarity = {POSitive I NEGuive}
pod_specification : format (integerfrom 0 to 655j5) for a pod Qnds are assigned in decreasing order)
value = vohage (real number) -9.9 to +9.9

Figure 17-1. TFORmat Subsystem Syntax Diagram

HP 1652F../16s38
Programming Reference

TFORmat Subsystem
17-1

pod-specificotion

THResho ld(li>

THResho i d<N>?

TFORmat SUbsystem 17
Introduction The TFORmat subsystem contains the commands available for the Timing

Format menu in the HP 1652B/53B logic analyzer. These commands are:

• LABel
• REMove
• THReshold

THResho i d<N>? ;-------------------"
16510/SX07

< N> = {1 I2 I 3 I 4 I 5}
name = string ofup to 6 alphanumeric characters
polarity = {POSitive I NEGative}
pod_specification = fonnat (integer from 0 to 65535) for a pod (pods are assigned in decreasing order)
value = voltage (real number) -9.9 to + 9.9

Figure 17-1. TFORmat Subsystem Syntax Diagram

HP 16528/16538
Programming Reference

TFORmat Subsystem
17-1

TFORmat

TFORmat

TFORmat Subsystem
17-2

selector

The TFORmat selector is used as part of a compound header to access
ftsse setring< normally found in the Timing Format menu. It always
follows the MACHine selector because it selects a branch directlv below
the MACHine level in the language tree.

Command Syntax: :MACHine{1 l2}:TFoRmat

Example: oUTPUT xxX;":l,lACHINEl :TF0RI'1AT:LABEL?"

HP 16528/16s38
Programming Relerence

TFORmat

TFORmat

Command Syntax:

Example:

TFORmat Subsystem
17-2

selector

The TFORmat selector is used as part of a compound header to access
those settings normally found in the Timing Format menu. It always
follows the MACHine selector because it selects a branch directly below
the MACHine level in the language tree.

:MACHine{112}:TFORmat

OUTPUT XXX;":MACHINE1:TFORMAT:LABEL?"

HP 16528/16538
Programming Reference

lABel

LABeI

HP 16528/16538
Programming Reference

command/query

The I-ABel command allows you to specify polarity and asslgn chattnels to
new or existing labels. If the specified label name does not match an
existing label namor a new label will be created.

The order of the pod-specification pilameters is significant. The first one
listed will match tfus highest-numbered pod assigned to the machine
you're usitg. Each pod specification after that is assigned to the
nsxt-highest-numbered pod. This way they match the left-to-right
descending order of the pods you see on the Format display. Not
includi"g enougb pod specifications results in the lowest-numbered
pod(s) being assigned a value of r-ero (all chat",els excluded). If you
include more pod specifications than there are pods for that machine, the
e:Cra ones will be ignored. Howevor, an error is reported anytime more
than five pod specifications are listed.

The polariry can be specified at any point after the label na-e.

Since pods contain L6 channels, the format value for a pod must be
between 0 and 65535 (2to-1). 'When giving the pod assignment in bioury
(base 2), eachbit will correspond to a 5ingle chant el. A n1u in a bit
position me?nrs the associated channel in that pod is assigned to that pod
and bit. A u0" in a bit position means the associated channel in that pod is
excluded from the label. For example, assig"i"g #8LLL1001L00 is
equivalent to enterin$ t'......* * * *..* *..t' througb the front-panel user
interface.

A label can not have a total of more than 32 chan',els assigned to it.

The I-ABel query returns the current specification for the selected (by
name) label. If the label does not exist, asthing is returned. Nu-bers iue
always returned in decimal format.

TFORmat Subsystem
17-3

LABel

HP 16528/16538
Programming Reference

LABel

command/query

The LABel command allows you to specify polarity and assign channels to
new or existing labels. If the specified label name does not match an
existing label name, a new label will be created.

The order of the pod-specification parameters is significant. The frrst one
listed will match the highest-numbered pod assigned to the machine
you're using. Each pod specification after that is assigned to the
next-highest-numbered pod. This way they match the left-to-right
descending order of the pods you see on the Format display. Not
including enough pod specifications results in the lowest-numbered
pod(s) being assigned a value of zero (all channels excluded). If you
include more pod specifications than there are pods for that machine, the
extra ones will be ignored. However, an error is reported anytime more
than five pod specifications are listed.

The polarity can be specified at any point after the label name.

Since pods contain 16 channels, the format value for a pod must be
between 0 and 65535 (216_1). When giving the pod assignment in binary
(base 2), each bit will correspond to a single channel. A "1" in a bit
position mean:s the associated channel in that pod is assigned to that pod
and bit. A "0" in a bit position means the associated channel in that pod is
excluded from the label. For example, assigning #B1111001100 is
equivalent to entering" ••**..•*.." through the front-panel user
interface.

A label can not have a total of more than 32 channels assigned to it.

The LABel query returns the current specification for the selected (by
name) label. If the label does not exist, nothing is returned. Numbers are
always returned in decimal format.

TFORmat Subsystem
17-3

IABeI

COmmand Syntax: :MACHine{112}:TFORmat:l-ABel <name>[, {<polarity> | <assignment>}]...

where:

<name> ::= stringolupto6alphanumericcharacters
<polarily> ;;= {POSitive I NEcative}

<assignment> :: = format (integer trom 0 to 65535) for a pod (pods are assigned in decreasing order)

Examples: OUTPUT xxx;":MACHIilE2:TFoRilAT:LABEL ',DATA" pOS, 65535. t27, 403t2"
OUTPUT XXX;":l,lACHINEZ:TF0RMAT:LABEL'STAT'. 1, 8096. POSITM"
0UTPUT XXX;":lilACHIl,lEl:TF0RMAT:LABEL 'ADDR', tltGATM, #B11ll00l0l0l0l0"

Query Syntax: :MACHine{1 l2}:TFORmarl-ABel? <name>

Returned Format: [:MACHine{1 l2}:TFORmatl-ABel] <name>[,<assignment>]...,<polarity> <NL>

Example: 10 DIM Str i nsg [100]
2A OUTPUT XXX ; " : I'IACHI NE2 : TFORMAT: LABEL? 'DATA "'
30 ENTER XXX String$
40 PRINT String$
50 END

TFORmat Subsystem
174

HP 16528/16s38
Programming Reference

LABel

Command Syntax: :MACHine{112}:TFORmatLABeI <name> [, {<polarity> I <assignment> }] ...

where:

<name>

<polarity>

< assignment>

Examples:

:: = string of up to 6 alphanumeric characters

:: = {POSitive I NEGative}
:: = format Onteger from 0 to 65535) for a pod (pods are assigned in decreasing order)

OUTPUT XXX;":MACHINE2:TFORMAT:LABEL 'DATA', POS, 65535, 127, 40312"
OUTPUT XXX;":MACHINE2:TFORMAT:LABEL 'STAT', 1, 8096, POSITIVE"
OUTPUT XXX;":MACHINEl:TFORMAT:LABEL 'ADDR', NEGATIVE, IBIIII00I0I0I0I0"

Query Syntax: :MACHine{112}:TFORmatLABeI? <name>

Returned Format:

Example:

TFORmat Subsystem
17-4

[:MACHine{112}:TFORmat:LABeI] <name> [, <assignment>]...,<polarity> < NL>

10 DIM String$[100]
20 OUTPUT XXX;": MACHINE2: TFORMAT: LABEL? ' DATA '"
30 ENTER XXX String$
40 PRINT String$
50 END

HP 1652B/1653~

Programming Reference

REMove

REMove

HP 16s28/16538
Programming Reference

command

#""*:yr;,":fi:il3HJ#fil:deretea'rabersoranvoneraber
Command Synta* :MACHine{l l2}:TFORmatREMove {<name> IALL}

where:

< name > :: = string of up to 6 alphanumeric characters

Examples: oUTPUT XXX; " :MACHINE1 :TFORMAT: REMoVE'A"'

0UTPUT XXX; ": I,IACHINEl : TFORi'|AT: REM0VE ALL"

TFORmat Subsystem
17-5

REMove

REMove

command

The REMove command allows you to delete all labels or anyone label
specified by name for a given machine.

Command Syntax: :MACHine{112}:TFORmat:REMove {<name> IALL}

where:

<name>

Examples:

HP 16528/16538
Programming Reference

:: = string of up to 6 alphanumeric characters

OUTPUT XXX;":MACHINE1:TFORMAT:REMOVE 'A'"
OUTPUT XXX;":MACHINE1:TFORMAT:REMOVE ALL"

TFORmat Subsystem
17-5

THReshold

THReshold command/query

The THReshold command allows you to set the voltage threshold for a
given pod to ECL, TTL or a specific voltage from -9.9V to + 9.9V in 0.1.

volt increments.

,t!l On the HP 16528, the pod thresholds of pods 1, 2, and 3 can be set
NOtg rf independently. The pod thresholds of pods 4 and 5 are slaved together;

therefore, when you set tle threshold on pod 4 or 5, both thresholds will
be changed to the specified value. On the HP 16538, both pods L and?
can be set independently.

The THReshold query returns the current threshold for a given pod.

Command Syntax: :MACHine{1 l2}:TFORmatTHBeshold<N> {TTLIECLI <value>}

where:

< N > :; - pod number {1 l2l3 l4 l5}
< value > :: = voltage (real number) -9.9 to + 9.9

TTL :: = default value of + 1.6V

ECL :: = default valus of -1 .3V

Example: o[trpr.JT)oo(u:MACHINEl :TFoRMAT:THRESHoLDI 4.0"

Query Syntax: :MACHine{1 | 2}:TFORmat:THReshold < N >?

Returned FOrmat: [:MACHine{1 f 2}:TFORmat:THReshold < N > J <vatue > < NL>

Example: 10 DIt't Vatueg [100]
20 OUTPUT XXX ; " : IIACH I t{E I : TFORI,|AT : THRESH0LDZ?"

30 ENTER XXX;Value$

40 PRINT Value$

50 END

TFORmatSubsystem HP 16528/16538
17€ Programming Feference

THReshold

THReshold

I
Note"

command/query

The THReshold command allows you to set the voltage threshold for a
given pod to EeL, TTL or a specific voltage from -9.9V to +9.9V in 0.1
volt increments.

On the HP 1652B, the pod thresholds of pods 1, 2, and 3 can be set
independently. The pod thresholds of pods 4 and 5 are slaved together;
therefore, when you set the threshold on pod 4 or 5, both thresholds will
be changed to the specified value. On the HP 1653B, both pods 1 and 2
can be set independently.

The THReshold query returns the current threshold for a given pod.

Command Syntax: :MACHine{112}:TFORmat:THReshold<N> {TILl ECLI <value>}

where:

<N>

<value>

TIL

ECl

Example:

Query Syntax:

Returned Format:

Example:

TFORmat Subsystem
17-6

:: = pod number {112131415}

:: = voltage (real number) -9.9 to +9.9

:: = default value of + 1.6V

:: = default value of -1.3V

OUTPUT XXX;":MACHINE1 :TFORMAT:THRESHOLD1 4.0"

:MACHine{112}:TFORmat:THReshold < N>?

[:MACHine{112}:TFORmatTHReshold < N>] <value> < NL>

10 DIM Value$ [100]
20 OUTPUT XXX;":MACHINEl:TFORMAT:THRESHOLD2?"
30 ENTER XXX;Value$
40 PRINT Value$
50 END

HP 16528/16538
Programming Reference

TTRace Subsystem 18
Introduction

HP 16s28/16s38
Programming Reference

The TTRace subsystem contains the commands available for the Timing
Trace menu in the HP L652B153B logic analyzer. These rcmmands are:

o AMODe
o DURation
I EDGE
o GLITch
. PATTern

TTRace Subsystem
1&1

TTRace SUbsystem 18
Introduction

HP 16528/16538
Programming Reference

The TfRace subsystem contains the commands available for the Timing
Trace menu in the HP 1652B/53B logic analyzer. These commands are:

• AMODe
• DURation
• EDGE
• GLITch
• PA1l.em

TTRace Subsystem
18-1

TRANsitionol

durotion-volue

I obe l-norne

I obe i-norne

I obe l-norne g I i tch-spec

I obe l-norne

I obe i-norne poitern-spec

I cbe l-norne

GT - Sr€ater than
LT : {ess than
duration_Yalue : real number
label_name : string of up to 6 alphanumeic characters

edge-sp€c : string of characten '{R V lf lX}..."
R - rising edge

F : falling edge

T - togling or either edge

X - don't care or ignore this channel
glitch-spec : string of characten '{ * | . }...

n

* : seanch fo, a glitch on this channel
. : ignore this channel
pattern_spec : .

{#B {01 1 lX} . . .
I

#Q{olll2l3l4lsl6l7lx}. . .
I

#H{01ll2l3l4lsl6l7lslelAlBlclD I EIFlx} . . .
I

{ol112l314l5l617l8le} . . " }"

Figure 18-1. TTRace Subsystem Syntax Diagram

TTRace Subsystem
1&.2

HP 1652B,/16s38
Programming Relerence

GT = greater than
LT = less than
duration_value = real number
label_name = string ofup to 6 alphanumeric characters
edge_spec = string ofcharacters"{R IF ITIX}... tt

R = rising edge
F = falling edge
T = toggling or either edge
X = don't care or ignore this channel
glitch_spec = string ofcharacters "{ *1. }... tt

• = search for a glitch on this channel
. = ignore this channel
pattern_spec = "{#B{OllIX} I

#Q{OI1121314ISI617IX} I
#H{OI112131 4 ISI6171819IA IBICIDIEIFIX} ... I
{OI112131 4 ISI617IBI9} ... }"

duration_value t-----~

16510/SX08

TTRace Subsystem
18-2

Figure 18-1. TTRace Subsystem Syntax Diagram

HP 16528/16538
Programming Reference

TTRace

TTRace selector

The TTRace selector is used as part of a compound header to access the
settings found in the Timing Traoe menu. It always follovn the MACHine
selector because it selects a branch directlv below the MACHine level in
the language tree.

command syntax: :rvtAcHine{1 l2}:TTBace

Example: oUTPUT XXX; " : MACHI NE 1 : TTRACE : GL I TCH ',ABC '

HP 16s2Bl16538
Programming Reference

TTRace Subsystem
1&3

TTRace

TTRace

selector

The lTRace selector is used as part of a compound header to access the
settings found in the Timing Trace menu. It always follows the MACHine
selector because it selects a branch directly below the MACHine level in
the language tree.

Command Syntax: :MACHine{112}:TIRace

Example: OUTPUT XXX;":MACHINEl:TTRACE:GLITCH 'ABC', '

HP 16528/16538
Programming Reference

****,"

TTRace Subsystem
18-3

AMODe

AMODe

Command Syntax:

where:

< acquisition_mode >

command/query

The AI\dODe sommand allows you to select the acquisition mode used for
a particular tirning trace. The acquisition modes available are
TRAl.Isitional and GLITch.

The AMODe query rettrrns the current acquisition mode.

:MACHine{1 | 2}:TTRace:AMODe < acquisition_mode >

ir = {GLlTch lTMNsitional}

Example: 0UTPUT XXX; " :MACHINEl :TTRACE :AMoDE GLITCH"

Query Syntax: :lvlAOHinel:TTRace:AMODe?

Returned Format: [:MACHinel:TTRace:AMODe] {GLITCHITMNSITIONAL}

Example: 10 DIt'{ M$ [1oo]
20 0UTPUT XXX ; " :l,lACHINEl :TTRACE :Ai4ODE?"

30 ENTER XXX; tl$

40 PR I NT I.{$

50 END

TTRace Subsystem
1&4

HP 16528116538
Programming Reference

AMODe

AMODe command/query

The AMODe command allows you to select the acquisition mode used for
a particular timing trace. The acquisition modes available are
TRANsitional and GLITch.

The AMODe query returns the current acquisition mode.

Command Syntax: :MACHine{112}:TIRace:AMODe <acquisition_mode>

where:

< acquisition_mode>

Example:

Query Syntax:

Returned Format:

Example:

TTRace Subsystem
18-4

:: = {GLITch ITRANsitional}

OUTPUT XXX; ":MACHINEl:TTRACE:AMODE GLITCH"

:MACHine1 :TIRace:AMODe?

[:MACHine1:T!Race:AMODe] {GLITCH ITRANSITIONAL}

10 DIM M$ [100]
20 OUTPUT XXX; ":MACHINEl:TTRACE:AMODE?"
30 ENTER XXX;M$
40 PRINT M$
50 END

HP 16528/16538
Programming Reference

DURation

DURation command/guery

The DURation command allows you to speci$ the duration qualifier to be
used with the pattern reeogaizer term in generating the timing trigger.
The duration value can be specified in 10 ns increments within fts
following ranges:

o Greater than (GT) qualification - 30 ns to 10 ms
o Less than (LT) qualification - 40 ns to 10 ms.

Si"R$:lon
query returns the current pattern duration qualifier

COmmand Syntax: :MACHine{1 l2}:TTBace:DURation {GTILT},<durarion_vatue>

where:

GT ::: greater than
LT ::= lessthan

<duration valu€ > ::= roal numbor

brample: oUTPUT XXX; ":ltACHIt{El:TTRACE:DURATIoN GT, 40.0E-9'

Query Syntax: :MACHine{1 l2i:TTRace:DURation?

Returned Format: [:MACHine{1 | 2}:TTRace:DURationl iGT I LT}, < duration_vatue > < NL>

Example: lo DrM Dg[1oo]

20 0UTPUT XXX; ":iIACHINEl:TTRACE:DURATI0N?"

30 ENTER XXX;D$

40 PRII{T D$

50 EriD

HP 16s28/16538
Programming Reference

TTRace Subsystem
I 8-5

DURation

DURation

command/query

The DURation command allows you to specify the duration qualifier to be
used with the pattern recognizer term in generating the timing trigger.
The duration value can be specified in 10 ns increments within the
following ranges:

• Greater than (GT) qualification - 30 ns to 10 ms
• Less than (LT) qualification - 40 ns to 10 IDS.

The DURation query returns the current pattern duration qualifier
specification.

Command Syntax: :MACHine{112}:TTRace:DURation {GTILT},<duration_value>

where:

GT

LT

<duration_value>

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

:: = greater than

:: = less than

:: = real number

OUTPUT XXX; ":MACHINE1:TTRACE:DURATION GT, 40.0E-9"

:MACHine{112}:TTRace:DURation?

[:MACHine{112}:TTRace:DURation] {GTI LT}, <duration_value> <NL>

10 DIM 0$ [100]
20 OUTPUT XXX; ":MACHINE1:TTRACE:DURATION?"
30 ENTER XXX;D$
40 PRINT 0$
50 END

TTRace Subsystem
18-5

EDGE

EDGE

TTRace Subsystem
18-6

command/query

The EDGE command allows you to specrfy the edge recognizer term for
the timing analyzer trigger on a per label basis. Each command deals with
only one label in the gtven edge specification; therefore, a complete
specification could require several commands. The edge specification uses

the characters R, F, T, X to indicate the edges or don't cares as follows:

R : tisiog edge
F - fali"g edge
T : toggling or either edge
X - don't care or ignore the channel

The position of these characters in the string corresponds with the
position of the chan'lels within the label. 4ll gfuannels without nX" are
ORed together to form the edge trigger specification.

The EDGE query returns the edge specification for the specified label.

:MACHine{1 l2}:TTRace:EDGE < label_name), (edge_spec >Command Syntax:

where:

< label_name > :: = string or up to 6 alphanumeric characters

<edge_spec> :: = string of characters "{RIFITIX}...'

b<ample: oUTPUT

HP 16528/16538
Programming Reference

EDGE

EDGE command/query

The EDGE command allows you to specify the edge recognizer term for
the timing analyzer trigger on a per label basis. Each command deals with
only one label in the given edge specification; therefore, a complete
specification could require several commands. The edge specification uses
the characters R, F, T, X to indicate the edges or don't cares as follows:

R = rising edge
F = falling edge
T = toggling or either edge
X = don't care or ignore the channel

The position of these characters in the string corresponds with the
position of the channels within the label. All channels without "X" are
ORed together to form the edge trigger specification.

The EDGE query returns the edge specification for the specified label.

Command Syntax: :MACHine{112}:TIRace:EDGE <label_name>,<edge_spec>

where:

< label_name>

<edge_spec>

Example:

TTRace Subsystem
18-6

:: = string or up to 6 alphanumeric characters

:: = string of characters "{RIFITIX}... II

OUTPUT XXX; ": MACHINEl: TTRACE: EDGE 'POOl', 'XXXXXXXR tI.

HP 16528/16538
Programming Reference

EDGE

Query Syntax! :MACHine{t l2}:TTRace:EDGE? <tabet nams>

Retumed Format: [:MACHine{ 1|z}:TTRace:] < label_name) , (edge_spec > < NL >

Example: 10 DIr't Egtlool
20 OUTPUT XXX; ":MACHINEl :TTRACE:EDGE?'POD1 "'
30 ENTER XXX; E$

40 PRINT I$
50 END

HP 16528./16538
Programming Reference

TTRace Subsystem
1E-^7

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

EDGE

:MACHine{112}:TTRace:EDGE? <label_name>

[:MACHine{112}:TTRace:] <Iabel_name>,<edge_spec> <NL>

10 DIM E$ [100]
20 OUTPUT XXX; ":MACHINE1:TTRACE:EDGE? 'POOl ,..
30 ENTER XXX;E$
40 PRINT E$
50 END

TTRace Subsystem
18-7

GLlTch

GLlTch

TTRace Subsystem
18-8

The GLITch command allows you to speciS the glitch recognizer term for

ri,*"ilitr'ff ft tlxffi FH:ffi f tr"Ti"Trij;*"*"
il:S:i#;1$*::3ffi :ix?"frffi -d*rhegritchspecincation

'r" (6terisk) = search for a glitch on this chennel

'." (Period) : ignore this channel

Ihe position of these characters in the string corresponds with the

B'i'S"il:$:,"ffi ,HH$i#";;#";Hm:X.withthen*"are

Ihe GLITch query retums the glitch specification for the specified label.

Command Syntax: :MACHine{l l2}:TTRace:GLlTch <labet-name>,<glilch-spec>

where:

< label_name > :: = string ol up to 6 alphanumeric charactsrs

<glitch_spec> ::= string of charactots"{tl.}..,"

Example: 0UTPUT XXX; ":IIACHINEI:TTRACE:GLITCH'P001"

QuerySyntax: ;MACHinel:TTRace:GLlTch? <labol name>

Returned Format: [:MACHinel:TTRace:GLlTch] <label-name>,<glitch-spec> <NL>

Example: ro DIr'r c$ [1oo]
20 0UTPUT XXX; ":I'IACHINEl :TTRACE :GLITCH?'PODl "'
30 E}ITER XXX; G$

40 PRINT G$

50 END

command/query

HP 1652F./16538
Programming Reference

GLITch

GLITch command/query

The GLITch command allows you to specify the glitch recognizer term for
the timing analyzer trigger on a per label basis. Each command deals with
only one label in a given glitch specification, and, therefore a complete
specification could require several commands. The glitch specification
uses the characters "*" and "." as follows:

"." (asterisk) = search for a glitch on this channel

"e" (period) = ignore this channel

The position of these characters in the string corresponds with the
position of the channels within the label. All channels with the "*" are
ORed together to form the glitch trigger specification.

The GLITch query returns the glitch specification for the specified label.

Command Syntax: :MACHine{112}:TTRace:GLlTch <Iabel_name>,<glitch_spec>

where:

< label_name>

< glitch_spec>

Example:

Query Syntax:

Returned Format:

Example:

TTRace Subsystem
18-8

:: = string of up to 6 alphanumeric characters

:: = string of characters "{* I.}..."

OUTPUT XXX; ":MACHINEl:TTRACE:GLITCH 'POOl', '** *'"

:MACHine1 :TTRace:GLlTch? < label_name>

[:MACHine1:TTRace:GLlTch] <label_name>, <glitch_spec> < NL>

10 DIM G$ [100]
20 OUTPUT XXX; ":MACHINEl:TTRACE:GLITCH? 'POOl '"
30 ENTER XXX;G$
40 PRINT G$
50 END

HP 16528/16538
Programming Reference

PAfiern

PAfiern command/query

The PATTern command allows you to construct a pattern recognizer term
for the tining analyzer trigger on a per label basis. Each command deals

$*fi*,,:Tihl:ffi 3::"Ti*tr*;1;;Tili::'ffi,[i*
up to 32 bits, 1tr" r""g" of the pattern value will be between 0 and 1232;-f.
The value may be expressed in binary (#B), octal (#Q), horadecimal
(#H) or decinal (default). When the value of a pattern is expressed in
binary, it represents the bit values for the label inside the pattern
reelrgnizr;r term. Since a pattern value can contain don't cares, the
pattern specification parameter is handled as a string of characters
instead of a number.

The PATTern query returns the pattern specification for the specified
label in the base previously defined for the label.

Command Syntax: :MAGHine{l l2i:TTRace:PATTern <label_nam€>,<pattsrn-sp€c>

where:

< label-name > :: = string ot up lo 6 atphanumeric charac'ters

<pattem_spec> ::='{#B{0l1lX}... I

#o{0l1l2l3l4l5l6l7lx}... I

#H{01 I l2l3l4l5l6lTlslelAlBlclDlElFlx} . . . I

{01 1 l2l3l4l5l6l7l8le} . . . }"

Example: 0UTPUT xXX; " :l'lACHINEl :TTRACE :PATTERN'DATA"'255 "'

HP 16528/16538
Programming Reference

TTRace Subsystem
1g-g

PATIern

PATIern

command/query

The PAlTern command allows you to construct a pattern recognizer term
for the timing analyzer trigger on a per label basis. Each command deals
with only one label in the given pattern; therefore, a complete timing trace
specification could require several commands. Since a label can contain
up to 32 bits, the range of the pattern value will be between 0 and (232)_1.
The value may be expressed in binary (#B), octal (#0), hexadecimal
(#H) or decimal (default). When the value of a pattern is expressed in
binary, it represents the bit values for the label inside the pattern
recognizer term. Since a pattern value can contain don't cares, the
pattern specification parameter is handled as a string of characters
instead of a number.

The PAlTern query returns the pattern specification for the specified
label in the base previously dermed for the label.

Command Syntax: :MACHine{112}:TIRace:PATIern <Iabel_name>,<pattern_spec>

where:
.,

< label_name>

< pattern_spec>

Example:

HP 16528/16538
Programming Reference

:: = string of up to 6 alphanumeric characters

:: = "{#B{OI1IX} ... I

#Q{OI1121314151617IX} ... I
#H{OI11213141516171819IAIBICIDIEIFIX} ... I

{OI11213141516171819} ... }"

OUTPUT XXX; ":MACHINEl:TTRACE:PATTERN 'DATA', '255'"

TTRace Subsystem
18-9

PATTern

Query Syntax: :MACHine{l l2i:TTRace:PATTern? <label-name>

Returned Format: [:MACHine{1 l2}:TTRace:PATTern] <label_name>,<pattern_spec> <NL>

Example: 10 Drt't Pg [1oo]
?O OUTPUT XXX;',:MACHINEz :TTRACE:PATTERN?'DATA'''

30 ENTER XXX; P$

40 PRINT P$

50 END

TTRace Subsystern
1&10

HP 16528/16538
Programming Relerence

PATIern

Query Syntax:

Returned Format:

Example:

TIRace Subsystem
18-10

:MACHine{112}:TIRace:PATIern? < label_name>

[:MACHine{112}:TIRace:PATIern] <Iabel_name>,<pattern_spec> <NL>

10 DIM P$ [100]
20 OUTPUT XXX; ":MACHINE2:TTRACE:PATTERN? 'DATA'"
30 ENTER XXX;P$
40 PRINT P$
50 END

HP 16528/16538
Programming Reference

TWAVeform Subsystern 19
lntroduction

HP 16528/16s38
Programming Reference

The TWAVeform subsystem contains the commands available for the
Timing Wavefonns menu in the HP L65281538. These commands are:

. ACCumulate

. DELay
o INSert
o MMODe
o OcoNdition
o OPATtern
o OSEarch
o OTIMe
o RANGe
o REMove
o RUNTiI
o SPERiod
o TAVerage
o TMAXimum
o TMINimum
o \{RUNs
o XcoNdition
o XOTime
o XPATtern
o XSEarch
o XTIMe

TWAVeform Subsystem
19-1

TWAVeform Subsystem 19
Introduction

HP 16528/16538
Programming Reference

The TWAVeform subsystem contains the commands available for the
Timing Waveforms menu in the HP 1652B/53B. These commands are:

• ACCumulate
• DELay
• INSert
• MMODe
• oCONdition
• OPATtem
• OSEarch
• OTIMe
• RANGe
• REMove
• RUNTil
• SPERiod
• TAVerage
• TMAXimum
• TMINimum

.• VRUNs

• XCONdition
• XOTime
• XPATtem
• XSEarch
• XTIMe

TWAVeform Subsystem
19-1

ACCumu I ote:TWAVeform

ACCumu I o te?

deloy-volve

OVER I oy

OCOf'ld i t ion

OCONdition?

I obe l-n drle lobel-pottern

I obe l-ncne

occur r once

t ime-vo lue

Figure 19-1. TWAVeform Subsystem Syntax Diagram

TWAVeform Subsystem
1$2

HP 16528/16s38
Programming Reference

,

!--------'T"-I..; b i t_ i d t----r--------~

01650S09

Figure 19-1. TWAVeform SUbsystem Syntax Diagram

TWAVeform SUbsystem
19-2

HP 16528/16538
Programming Reference

t ime-ronge

RANGe ?

REMo ve

spoceRUNT i I run-unt i l-sDec

RUNTiI?

SPER i od?

TAVe r oge?

TMAX imum?

TMIN imum?

VRUNs ?

ENTer i ngspoc€XCONdition

EXIT i ng

XCONdition?

XOT ime ?

XPATtern spoce I obe | -nome I obe i-pottern

XPATlern? spoce I obe | -nome

XSforch spoce !- occur r ence TRIGger

XSEorch?

spoce i+i t ime-vo I ueXTIMe

XT IMe ?

HP 16528.116538
Programming Reference

Figure 19-1. TWAVelorm Subsystem Syntax Diagram (continued)

TWAVeform Subsystem
1g-3

HP 16528/16538
Programming Reference

•

TAVe rage? !--~

TMAX j mum?---------------------------------~

TM I N i mum? r---~

lobe i_pattern ~----~~

"XTIMe~-~~~ time_va I ue ~--------------~

XT IMe? 1-----------------------------------
01650504

Figure 19-1. TWAVeform Subsystem Syntax Diagram (continued)

TWAVeform Subsystem
19-3

delray-value : real numberbetween -25M s otd + 25M s
module_spec : 11 l2l3l4l5\
bit_id : integer ftom 0 to 31
waveform : sting contoining < acEisition

-spec
> {1 l2}

acquisition sp = {A I
B I C I

D
I
E} (slot where acEtffition catd is located)

label-name = string of up to 6 alphanumeric chuacten
label3attein ='{*B{0ltlx}... I

#Q{olll2l3l4lsl6l7lxI . . . I

#H{0lll2l3l4lsl6l7lslelAlBlclDlElrE} . . . I

{ol rl2l3l4lsl6l7lglel . . . }'
occlur€noe : integer
time_value = real nurnber
label id = string of one alpha od one numeric charucter

module-num = slot number in which he timebase card is installed
tlme_range : real numberbetween 100ns md l0lcs
nrn-until-spec = {OFF I

LT, < value > | GT, < value >
|
INRange < vahte >, < value >

|

OWRange < value >, < vafue > \
G''I : Woterth.m
W: lessthan
value = realnumber

Figure 1$,1. TWAVeform Subsystem Syntax Diagram (continued)

TWAVeform Subsystem
1$-{

HP 16528/16538
Programming Relerence

delay_value = real number between -2500 s and +2500 s
module_spec = {112131415}
bit_id = integerfrom 0 to 31
waveform = string containing < acquisition_spec> {112}
acquisition_spec = {A IB ICID IE} (slot where acquisition card is located)
label_name = string ofup to 6 alphanumeric characters
label.Jl8ttem = "{#B{OllIX} I

#Q{011121314151617IX} I
#H{0111213141516171819IA IBICIDIEIFIX} ... 1
{0111 213141516171819} ... }"

occurrence = integer
time_value = real number
label_id = string ofone alpha and one numeric character
module_num = slot number in which the timebase card is installed
time_range = real number between 100 ns and 10 ks
run_until_spec = {OFFILT, <value> IGT, <value> IINRange<value>, <value> 1

OUTRange < value>, < value> }
GT = greater than
LT = less than
value = real number

Figure 19-1. TWAVeform Subsystem Syntax Diagram (continued)

TWAVeform Subsystem
19-4

HP 16528/16538
Programming Reference

TWAVeform

TWAVeform Selector

The TWAVeform selector is used as part of a compound header to access

fls s,sttings found in $s fiming Waveforms menu. [t always follows the
MACHine selector because it selects a branch below the MACHine level
in the command tree.

Command Syntax: :MAGHine{l l2}:TWAVeform

Example: oUTPUT xxx; " :MACHINEl : TIJAVEF0RM: DELAY 100E-9"

HP 16s2Bl16s3B
Programming Reference

TWAVeform Subsystem
1$,5

TWAVeform

Command Syntax:

Example:

HP 16528/16538
Programming Reference

TWAVeform

Selector

The TWAVeform selector is used as part of a compound header to access
the settings found in the Timing Waveforms menu. It always follows the
MACHine selector because it selects a branch below the MACHine level
in the command tree.

:MACHine{112}:TWAVeform

OUTPUT XXX;":MACHINE1:TWAVEFORM:DELAY 100E-9"

TWAVeform Subsystem
19-5

ACCumulate

ACCumulate command/query

The ACCumulate command allows you to control whether the chart
display gets erased between each individual run or whether subsequent
waveforms are allowed to be displayed over the previous ones.

The ACCumulate query returns the current sstting. The query always
shows the setting as the character "0" (off) or "1" (on).

GOmmand Syntax: :MAGHine{l l2}:TWAVeform:ACcumulate <setting>

where:

<setting> l: {0lOFF}or{1 ION}

Example: 0UTPUT XXX; " : MACHI NE 1 : TI'IAVEF0RM: ACCUMULATE 0N"

Query Syntax: :MACHine{1 l2}:TWAVeform:ACCumutate?

Returned Format: [:MACHine{1 f 2}:TWAVeform:AOGumutateJ {O | 1} < NL>

Example: to DIr't P$ [1oo]
2A 0UTPUT XXX; ": I'IACHINEl : TIIAVEF0RM: ACCUMULATE?"

30 ENTER XXX; P$

40 PRINT P$

50 END

TWAVeform Subsystem
19-6

HP 16528/16s38
Programming Reference

ACCumulate

ACCumulate command/query

The ACCumulate command allows you to control whether the chart
display gets erased between each individual run or whether subsequent
waveforms are allowed to be displayed over the previous ones.

The ACCumulate query returns the current setting. The query always
shows the setting as the character "0" (off) or "1" (on).

Command Syntax: :MACHine{112}:TWAVeform:ACCumulate <setting>

where:

<setting>

Example:

Query Syntax:

Returned Format:

Example:

TWAVeform Subsystem
19-6

:: = {Q IOFF} or {110N}

OUTPUT XXX;":MACHINEl:TWAVEFORM:ACCUMULATE ON"

:MACHine{112}:TWAVeform:ACCumulate?

[:MACHine{112}:TWAVeform:ACCumulate] {QI1} < NL>

10 DIM P$ [100]
20 OUTPUT XXX;":MACHINEl:TWAVEFORM:ACCUMULATE?"
30 ENTER XXX; P$
40 PRINT P$
50 END

HP 16528/16538
Programming Reference

DELay

DEtay

HP 16528/16538
Programming Reference

command/Query

The DEI^ay co--and specifies the amount of time between &s liming
trigger and the horizontal center of the the timing waveform display. The
allowable values for delay are -2500 s to +2500 s. In glitch acquisition
mode, as delay becomes large in an absolute sense, the sample rate is
adjusted so that data will be acquired in the time window of interest. In
lpansitional acquisition mode, data may not fall in the time window since
the sample period is fixed at 10 ns and the amount of time covered in
memory is dependent on how frequent the input signal transitions occur.

The DELay query returns the current time offset (delay) value from the
trigger.

COmmand Syntax: :MACHine{l l2}:TWAVeform:DELay <delay_value>

where:

<delay_value > :: = real number between -2500 s and +2500 s

Example: oUTPUT xXX ; " : l,lAcHINEl : TtrAVEFoRt"l : DELAY 100E-6"

Query Syntax: :MACHine{l | 2}:TWAVeform:DEaye

RetUrned Format: [:MACHine{1 l2}:TWAVeform:DEt ayJ <time_value > < NL>

Example: 10 DIr.t Dt$ [too]
2A OUTPUT XXX; " : l,lACHI NEI : TUAVEF0RM: DTLAY?"

30 ENTER XXX; Dl$

40 PRINT Dl$

50 END

TWAVeform Subsystem
19-7

DElay

DElay

command/query

The DELay command specifies the amount of time between the timing
trigger and the horizontal center of the the timing waveform display. The
allowable values for delay are - 2500 s to +2500 s. In glitch acquisition
mode, as delay becomes large in an absolute sense, the sample rate is
adjusted so that data will be acquired in the time window of interest. In
transitional acquisition mode, data may not fall in the time window since
the sample period is fIXed at 10 ns and the amount of time covered in
memory is dependent on how frequent the input signal transitions occur.

The DELay query returns the current time offset (delay) value from the
trigger.

Command Syntax: :MACHine{112}:TWAVeform:DELay <delay_value>

where:

< delay_value>

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

:: = real number between -2500 sand +2500 s

OUTPUT XXX;":MACHINE1:TWAVEFORM:OELAY 100E-6"

:MACHine{112}:TWAVeform:DELay?

[:MACHine{112}:TWAVeform:DELay] <time_value> < NL>

10 DIM 01$ [100]
20 OUTPUT XXX;":MACHINE1:TWAVEFORM:OELAY?"
30 ENTER XXX; 01$
40 PRINT 01$
50 END

TWAVeform Subsystem
19-7

lNSert

lNSert

TWAVeform Subsystem
1g-g

command

The INSert command inserts waveforms in t[s timing waveform display.
The waveforms are added from top to bottom. When 24 waveforms are
present, inserting additional waveforms replaces the last waveform .

The first parameter specifies the label name that will be inserted. The
second parrneter specifies the label bit number or overlay.

If OVERI-AY is specifid all the bits of the label are displayed as a
composite overlaid waveform.

command syntax: :MACHine{1 l2}:TWAVeform:lNSert < labet_nam€ > { < bit-id > | oVERlay}

where:

< label_name > :: = string of up to 6 alphanumeric characters

< bit_id > :: = integer from 0 to 31

Example: oUTPUT XXX ; " : l,lACHI NEl : TTJAVEFoRM : I NSERT'brAVE', 10"

HP 16528/16538
Programming Reference

INSert

INSert command

The INSert command inserts waveforms in the timing waveform display.
The waveforms are added from top to bottom. When 24 waveforms are
present, inserting additional waveforms replaces the last waveform .

The fIrst parameter specifies the label name that will be inserted. The
second parameter specifies the label bit number or overlay.

If OVERLAY is specified, all the bits of the label are displayed as a
composite overlaid waveform.

Command Syntax: :MACHine{112}:TWAVeform:INSert<label_name> {<bit_id> /OVERlay}

where:

< label_name>

<bit_id>

Example:

TWAVeform Subsystem
19-8

:: = string of up to 6 alphanumeric characters

:: = integer from 0 to 31

OUTPUT XXX;":MACHINE1:TWAVEFORM:INSERT 'WAVE' ,10"

HP 16528/16538
Programming Reference

MMODe

MMODe

HP 1652B'l16s38
Programming Relerence

command/guery

ff #ffi hgri ,fJ*ltrT,Ti;*?:T :::.HL:
con'[ro'ing

PATTern is selected the markers will be placed on patterns. When

ffi ff "Jfff*:i""LilJ:::ffiX tr Hg3 H,ll;;.*"
markers are

The MMODe queryreturns ttre current marker mode.

Command Syntax: :MACHine{112}:TWAVeiorm:MMODe {OFFlPATTernlT|MElMSTats}

Example: oUTPUT xxx; ":ltACHINEl:TyAVEFoRl,l:itMODE TIllE"

Query Syntax: :MACHine{1 l2}:TWAVetorm:MMODe?

Returned Format: [:MACHine{l | 2}:TWAVelorm:MMODe] < markor_mode > < NL >

where:

<marker_mode> :: = {OFFlPATTernlT|MElMSTats}

Ercample: 10 DIM I't$ [1oo]
20 0UTPUT XXX ; " :l,lACHINE1 : TbJAVEF0RM : l'lM0DE?"

30 ENTER XXX; t'l$

40 PR I NT I'I$

50 END

TWAVeform Subsystem
1$,9

MMODe

MMODe

command/query

The MMODe (Marker Mode) command selects the mode controlling
marker movement and the display of the marker readouts. When
PATTern is selected, the markers will be placed on patterns. When
TIME is selected, the markers move on time. In MSTats, the markers are
placed on patterns, but the readouts will be time statistics.

The MMODe query returns the current marker mode.

Command Syntax: :MACHine{112}:TWAVeform:MMODe {OFFIPATTern/TIMEIMSTats}

Example: OUTPUT XXX; ":MACHINE1:TWAVEFORM:MMODE TIME"

Query Syntax: :MACHine{112}:TWAVeform:MMODe?

Returned Format: [:MACHine{112}:TWAVeform:MMODe] <marker_mode> <NL>

where:

< marker_mode>

Example:

HP 16528/16538
Programming Reference

:: = {OFFI PATTern ITIMEI MSTats}

10 DIM M$ [100J
20 OUTPUT XXX;":MACHINE1:TWAVEFORM:MMODE?"
30 ENTER XXX; M$
40 PRINT M$
50 END

TWAVeform SUbsystem
19-9

OCONdition

OCONdition

TWAVeform Subsystem
19-10

command/guery

The OCONdition command specifies where the O marker is placed. The

fl ilrfr#::"Jff;l:::::
entrv or exit point of the oPArtern when

The OCONdition query returns the current setting.

GOmmand Syntax: :MACHine{1 l2}:TWAVelorm:OCONdition {ENTering lDffiing}

Example: 0UIPUT xxX ; " :ilACHIriEl : TUAVEF0RT{ : 0C0NDITIOT{ EI{TERING'

Query Syntax: :MACHine{1 l2}:TWAVefom:OCONdirion?

Returned Format: [:MACHine{1 l2}:TWAVeform:OoONdition] {ENTering lD(Ting} < NL>

Example: 10 DIt't oc$ [1oo]
20 0UTPUT XXX ; " :I'IACHINE1 :TbIAVEF0RM :OCONDITI0N?"

30 ENTER XXX; 0c$

40 PRINT 0c$

50 END

HP 1652B../16s38
Programming Relerence

OCONdition

OCONdition

Command Syntax:

Example:

Query Syntax:

Returned Format:

Example:

TWAVeform Subsystem
19-10

command/query

The OCONdition command specifies where the 0 marker is placed. The
o marker can be placed on the entry or exit point of the OPATtern when
in the PATTern marker mode.

The OCONdition query returns the current setting.

:MACHine{1 12}:TWAVeform:OCONdition {ENTering 1EXITing}

OUTPUT XXX; ":MACHINE1:TWAVEFORM:OCONDITION ENTERING"

:MACHine{112}:TWAVeform:OCONdition?

[:MACHine{ 112}:TWAVeform:OCONdition] {ENTering 1EXITing} < NL>

10 DIM Oc$ [100J
20 OUTPUT XXX;":MACHINE1:TWAVEFORM:OCONDITION?"
30 ENTER XXX; Oc$
40 PRINT Oc$
50 END

HP 16528/16538
Programming Reference

OPATtern

OPATtern

HP 16528/16538
Programming Reference

command/query

The OPATtern command allows you to construct a pattern recogaizer
term for the O marker which is then used with the OSEarch criteria and

OCONdition when moving the marker on patterns. Since this command
deals with only one label at a time, a complete specilication could require
several invocations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern rccagizer term. In whatever base

is use4 the value must be between 0 aadz"'- 1, since a label may not have

more than 32 bits. Because the < labelpattern> parameter may contain
don't cares, it is handled as a string of characters rather than a number.

The OPATtern query in pattern marker mode, returns the pattern
specification for a given label name. In the time marker mode, the query
returns the pattern under the O marker for a given label. If the O marker
is not placed on valid data, don't cares (XX...X) are returned.

COmmand Syntax: :MACHino{1 l2}:TWAVeform:OPATtem <label-name>,<label-pattern>

where:

<label_name> :: = string of up to 6 alphanumeric charactors

<label_pattern> ::='i#Bi0lllX)... I

#o{ol1 l213l4l516l7lx}, . . I

#H{01 1 l2lsl4lsl6lTlslslAlBlclDlElFlx} . . . I

{ol1 l2l3l4lsl6l7l8le}... }"

Example: 0UTPUT XXX; " :MACHINEl :TIJAVEFORM:oPATTERN'A',' 511 "'

TWAVeform Subsystem
19-1 1

oPATtern

oPATtern

command/query

The OPATtem command allows you to construct a pattern recognizer
term for the 0 marker which is then used with the OSEarch criteria and
OCONdition when moving the marker on patterns. Since this command
deals with only one label at a time, a complete specification could require
several invocations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern reco~erterm. In whatever base
is used, the value must be between 0 and 2 2 - 1, since a label may not have
more than 32 bits. Because the < label'-pattern > parameter may contain
don't cares, it is handled as a string of characters rather than a number.

The OPATtern query, in pattern marker mode, returns the pattern
specification for a given label name. In the time marker mode, the query
returns the pattern under the 0 marker for a given label. If the 0 marker
is not placed on valid data, don't cares (XX...X) are returned.

Command Syntax: :MACHine{112}:TWAVeform:OPATtern <label_name>,<label_pattern>

where:

< label_name>

< label_pattern>

Example:

HP 16528/16538
Programming Reference

:: = string of up to 6 alphanumeric characters

:: = "{#B{OI1IX} ... I

#Q{OI1121314151617IX} ... I

#H{OI11213141516171819IAIBICIDIEIFIX} ... I

{OI112131415161 7 1819} ... }"

OUTPUT XXX; ":MACHINE1 :TWAVEFORM:OPATTERN 'A', '511 '"

TWAVeform SUbsystem
19-11

OPATtern

Query Syntax: :MACHine{1 l2}:TWAVelorm:OPATtem? <label-name>

ReturnedFOrmat: [:MACHine{112}:TWAVeform:OPATtern] <label_nams>,<label3attern><NL>

Example: 10 DIM op$ [1oo]
?0 OUTPUT XXX;": I'IACHINEl : T|,JAVEFORM:0PATTERN? 'A "'
30 ENTER XXX; 0p$

40 PR I NT 0p$

50 END

TWAVeform Subsystem
19-12

HP 16528/16538
Programming Reference

oPATtern

Query Syntax: :MACHine{1\2}:TWAVeform:OPATtern? <label_name>

Returned Format: [:MACHine{1\2}:TWAVeform:OPATtern] < label_name>, < label-pattern > < NL>

Example: 10 DIM Op$ [100]
20 OUTPUT XXX;":MACHINE1:TWAVEFORM:OPATTERN? 'A'"
30 ENTER XXX; Op$
40 PRINT Op$
50 END

TWAVeform Subsystem
19-12

HP 16528/16538
Programming Reference

OSEarch

OSEarch

where:

< origin >

< o@urrenoe >

HP 16s28/16538
Programming Reference

{TRlGger lXMARker}
integer from -9999 to +9999

command/guery

The OSEarch cnrmmand defines the search criteria for the O marker
which is then used with the associated OPATtern recogoizer specification
and the OCONdition when moving markers on patterns. The origin
parameter tells the marker to begin a search with the trigger or with the X
marker. The actual occurrenc€ the marker searches for is determined by
the occurrence parameter of the OPATtern recognizer specification,
relative to the origin. An occurrence of 0 places a marker on the selected
origin. With a negative occlurence, the marker searches before the origin.
With a positive occlurenoe, the marker searches after the origin.

The OSEarch query returns tle search criteria for the O marker.

Command Syntax: :MACHine{1 l2}:TWAVeform:OSEarch <occurenoe>,<origin>

Example: oUTPUT XXX ; " : MACHINEI : TIJAVEFORM :oSEARCH +10, TRIGGER"

Query Syntaxt :MACHine{1 l2}:TWAVeform:OSEarch?

Returned Format: [:MACHine{112}:TWAVeform:OSEarch] <occurrenoe>,<origin> <NL>

Example: 10 DrM os$ [too]
20 0UTPUT XXX ; " :I'IACHINE1 : TbJAVEF0Ri-| : 0SEARCH?"

30 ENTER XXX; 0s$

40 PR I NT 0s$

50 END

TWAVeform Subsystem
1g-13

OSEarch

OSEarch

command/query

The OSEarch command defines the search criteria for the 0 marker
which is then used with the associated OPATtem recognizer specification
and the OCONdition when moving markers on patterns. The origin
parameter tells the marker to begin a search with the trigger or with the X
marker. The actual occurrence the marker searches for is determined by
the occurrence parameter of the OPATtem recognizer specification,
relative to the origin. An occurrence of 0 places a marker on the selected
origin. With a negative occurrence, the marker searches before the origin.
With a positive occurrence, the marker searches after the origin.

The OSEarch query returns the search criteria for the 0 marker.

Command Syntax: :MACHine{112}:TWAVeform:OSEarch <occurrence>,<origin>

where:

<origin>

< occurrence >

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

:: = {TRIGger IXMARker}

:: = integer from -9999 to +9999

OUTPUT XXX; ":MACHINE1:TWAVEFORM:OSEARCH +10,TRIGGER"

:MACHine{112}:TWAVeform:OSEarch?

[:MACHine{112}:TWAVeform:OSEarch] <occurrence>, <origin> < NL>

10 DIM Os$ [100]
20 OUTPUT XXX;":MACHINE1:TWAVEFORM:OSEARCH?"
30 ENTER XXX; Os$
40 PRINT Os$
50 END

TWAVeform Subsystem
19-13

OTIMe

OTIMe

TWAVeform Subsystem
19-14

command/query

The OTIMe command positions the O marker in tine when the marker
mode is TIME. If data is not valid the comnand performs no action.

The OTIMe query returns the O marker position in time. If data is not
valid" the query returns 9.9E37.

Command Syntax: :MACHine{l l2}:TWAVeform:OTlMe <time_vatue>

where:

<time_value > :: = real number -2.51G to +2.51G

Example: oUTPUT xxX; ":ilACHIt{E1 :TTJAVEF0RI{:0TIr,tE 30. 0E-6"

Query Syntax :MACHine{1 l2}:TWAVeform:OTlMe?

Returned Format: [:MACHine{1 l2}rTWAVeform:OTlMe] <time_value> <NL>

Example: to DIl,t ot$ [too]
20 0UTPUT XXX ; " : IIACHI t{EI : T}JAVEF0RII{ : 0T IME?'

30 ENTER XXx; 0t$
40 PRI||T 0t$
50 ElrD

HP 16s2Bl16s38
Programming Reference

OTIMe

OTIMe command/query

The OTIMe command positions the 0 marker in time when the marker
mode is TIME. If data is not valid, the command performs no action.

The OTIMe query returns the 0 marker position in time. If data is not
valid, the query returns 9.9E37.

Command Syntax: :MACHine{112}:TWAVeform:OTIMe <time_value>

where:

<time_value>

Example:

Query Syntax:

Returned Format:

Example:

TWAVeform Subsystem
19-14

:: = real number -2.5Ks to +2.5Ks

OUTPUT XXX; ":MACHINE1:TWAVEFORM:OTIME 30.0E-B"

:MACHine{112}:TWAVeform:OTIMe?

[:MACHine{112}:TWAVeform:OTIMe] <time_value> < NL>

10 DIM Ot$ [100]
20 OUTPUT XXX;":MACHINE1:TWAVEFORM:OTIME?"
30 ENTER XXX; Ot$
40 PRINT Ot$
50 END

HP 16528/16538
Programming Reference

RANGe

RANGe

HP 16528/16538
Programming Reference

command/Query

The RANGe co--and specifies the full-screen time in tf,6 timing
waveform menu. It is equivalent to ten rimes tle seconds-per-division
s,string on the display. The allowable values for RANGe are from 1(X) ns
to 10 ks.

The RANGe query returns the current full-screen rime.

COmmand Syntax: :MACHine{1 l2}:TWAVefom:RANGe <time_vatue>

where:

<time_range > :: = real number botween 100 ns and 10 ks

Example: 0UTPUT xxX; " : l,lAcHI NEl : TuJAVEF0RM: RANGE 100E-9"

Query Syntax! :MACHine{ 1 l2I:TWAVeform:MNGe?

Returned Format: [:MACHine{ 1lzI:TWAVeform:RANGoJ <time_value > < NL>

Example: 10 DIt'r Rg$ [1oo]
20 OUTPUT XXX; " : ltlACHI NE1 : TI'IAVEFORM: RANGE?"

30 TNTER XXX; Rg$

40 PRINT Rg$

50 END

TWAVelorm Subsystem
1g-15

RANGe

RANGe

command/query

The RANGe command specifies the full-screen time in the timing
waveform menu. It is equivalent to ten times the seconds-per-division
setting on the display. The allowable values for RANGe are from 100 ns
to 10 ks.

The RANGe query returns the current full-screen time.

Command Syntax: :MACHine{112}:TWAVeform:RANGe <time_value>

where:

<time_range>

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

:: = real number between 100 ns and 10 ks

OUTPUT XXX;":MACHINE1:TWAVEFORM:RANGE 100E-9"

:MACHine{112}:TWAVeform:RANGe?

[:MACHine{112}:TWAVeform:RANGe] <time_value> <NL>

10 DIM Rg$ [100]
20 OUTPUT XXX;":MACHINE1:TWAVEFORM:RANGE?"
30 ENTER XXX; Rg$
40 PRINT Rg$
50 END

TWAVeform Subsystem
19-15

REMove

REMove

The REMove command deletes all waveforms from ttre display.

Command Syntax: :MACHine{1 l2}:TWAVeform:REMove

Example: 0UTPUT xXX;": MACHINEl : TuJAVEF0RM: REMoVE"

command

HP 16528116s38
Programming Reference

TWAVeform Subsystem
19,16

REMove

REMove

Command Syntax:

Example:

TWAVeform Subsystem
19-16

command

The REMove command deletes all waveforms from the display.

:MACHine{112}:TWAVeform:REMove

OUTPUT XXX;":MACHINEl:TWAVEFORM:REMOVE"

HP 16528/16538
Programming Reference

RUNTiI

RUNT|I command/query

The RUNTiI (run until) command defines stop oiteria based on the time
between the X and O markers when the trace mode is in repetitive. When
OFF is selected the anallzer will run until either the 'STOP" touch screen
field is touched or the STOP co--and is sent. Run until the time
between X and O marker options are:

o LessThan (LT) aspecifiedtirnevalue
o Greater Than (GT) a specified time value
o In the range (INRange) between rwo dme values
o Out of the range (OUTRange) between two time values

End points for the INRange and OtllRange should be at least 10 ns apart
since this i5 1[s minimum time at which data is sampled.

This command affects 1ls timing analyzer only, and has no relation to the
RUNTiI s6mmen6l5 in the SLIST and COMPare subsystems.

The RUNTit query returns the current stop criteria.

COmmand Syntax: :MAGHine{l l2}:TWAVeform:RUNTit <run_unrit spec>

where:

< run_until_spec >

< value >

lr= {OFF I LT,<value> lGT,<value> | fNRange<value),<value>
|

OUTRange <value), (value >)
:: = rgal number

Examples: oUTPUT

OUTPUT

:I{ACHINEI : TI,TAVEF0RM :RUNTIL GT, 800. 0E-6"
: t'fACHI Nt1 : TbrAVEFORtl: RUNTI L I NRANGT , 4 .5 , 5. 5"

HP 16528/16538
Programming Reference

TWAVeform Subsystem
19-17

RUNTil

RUNTil

command/query

The RUNTil (run until) command defines stop criteria based on the time
between the X and 0 markers when the trace mode is in repetitive. When
OFF is selected, the analyzer will run until either the "STOP" touch screen
field is touched or the STOP command is sent. Run until the time
between X and 0 marker options are:

• Less Than (LT) a specified time value
• Greater Than (GT) a specified time value
• In the range (INRange) between two time values
• Out of the range (0UTRange) between two time values

End points for the INRange and OUTRange should be at least 10 ns apart
since this is the minimum time at which data is sampled.

This command affects the timing analyzer only, and has no relation to the
RUNTil commands in the SLISt and COMPare subsystems.

The RUNTil query returns the current stop criteria.

Command Syntax: :MACHine{112}:TWAVeform:RUNTii <run_until_spec>

where:

< run_until_spec>

<value>

Examples:

HP 16528/16538
Programming Reference

::= {OFF I LT,<value> I GT,<value> IINRange<value>,<value> I
OUTRange < value> ,< value> }

:: = real number

OUTPUT XXX;":MACHINEl:TWAVEFORM:RUNTIL GT, 800.0E-6"
OUTPUT XXX;":MACHINEl:TWAVEFORM:RUNTIL INRANGE, 4.5, 5.5"

TWAVeform Subsystem
19-17

RUNTiI

-

Query Syntax: :MACHine{1 l2}:TWAVeform:RUNTil?

Returned Format: [:MAGHina{1 l2}:TWAVeform:RUNTit] <run_unrit_sp€c> <NL>

F-xample: 10 DIt'{ Ru$ tlool
20 OUTPUT XXX ; " :l,lACHINEl : TIIAVEFORM :RUI{TIL?"

30 ENTER XXX; Ru$

40 PR I NT Ru$

50 END

TWAVeform Subsystem
19-18

HP 16528/16s38
Programming Reference

RUNTil

Query Syntax:

Returned Format:

Example:

TWAVeform SUbsystem
19-18

:MACHine{112}:TWAVeform:RUNTiI?

[:MACHine{112}:TWAVeform:RUNTiI] < run_until_spec> < NL>

10 DIM Ru$ [100]
20 OUTPUT XXX;":MACHINE1:TWAVEFORM:RUNTIL?"
30 ENTER XXX; Ru$
40 PRINT Ru$
50 END

HP 16528/16538
Programming Reference

SPERiod

SPERIod

HP 16s28/16538
Programming Reference

The SPERiod query returns fts sample period of the last run.

Query Syntax: :MACHine{1 l2}:TWAVeform:SPERiod?

Returned Format: [:MAGHine{1 l2}:TWAVeform:SPERiod] <time_value> <NL>

where:

<time_value > :: = real number

Example: 10 DIM sp$ [1oo]
20 0UTPUT XXX; ": MACHINEl : TI,JAVEF0RM: SPERI0D?"

30 ENTER XXX; Sp$

40 PRINT Sp$

50 END

query

TWAVeform Subsystem
19-19

SPERiod

SPERiod

query

The SPERiod query returns the sample period of the last run.

Query Syntax: :MACHine{112}:TWAVeform:SPERiod?

Returned Format: [:MACHine{112}:TWAVeform:SPERiod] <time_value> <NL>

where:

Example:

HP 16528/16538
Programming Reference

:: = real number

10 DIM Sp$ [100]
20 OUTPUT XXX;":MACHINE1:TWAVEFORM:SPERIOD?"
30 ENTER XXX; Sp$
40 PRINT Sp$
50 END

TWAVeform Subsystem
19-19

TAVerage

TAVerage

Query Syntax:

Returned Format:

where:

< time-value >

Example:

TWAVelorm Subsystem
19-20

query

The TAVerage query returns the value of the average time between the X
and O markers. If there is no valid data, the query returns 9.9837.

: MACHine { 1 | 2} :TWAVeform :TAVerage?

[:MACHine{ 1l2I:TWAVeform:TAVerage] <time-value > < NL>

:: = real number

10 DIla Tv$ [100]
20 OUTPUT XXX;": MACHINEl : TbJAVEF0RM: TAVERAGE?"

30 ENTER XXX; Tv$

40 PRINT Tv$

50 END

HP 16528./16538
Programming Relerence

TAVerage

TAVerage query

The TAVerage query returns the value of the average time between the X
and 0 markers. If there is no valid data, the query returns 9.9E37.

Query Syntax: :MACHine{112}:TWAVeform:TAVerage?

Returned Format: [:MACHine{112}:TWAVeform:TAVerage] <time_value> < NL>

where:

Example:

TWAVeform Subsystem
19-20

:: = real number

10 DIM Tv$ [100]
20 OUTPUT XXX;":MACHINE1:TWAVEFORM:TAVERAGE?"
30 ENTER XXX; Tv$
40 PRINT Tv$
50 END

HP 16528/16538
Programming Reference

TMA)(|mum

TMA)(Imum

HP 16528/16538
Programming Reference

query

The TMAXimum query returns the value of the pilimrm rime between
the X and O markers. If there is no valid dat4 the query returns 9.9B3i1.

Query Syntax: :MACHine{1 l2}:TWAVelorm:TlVlMmum?

Retumed Format: [:MACHine{1 l2}:TWAVelorm:TMAXmuml <time_value> <NL>

where

<time value > :: = real number

Example: 10 DIr,r Tx$ [too]
20 OUTPUT XXX ; " : MACHINEI :TIJAVEFORM: TMA,\IMUI'|?"

30 ENTER XXX; Tx$

40 PR I NT Tx$

50 END

TWAVelorm Subsystem
19-21

TMAXimum

TMAXimum

query

The TMAXimum query returns the value of the maximum time between
the X and 0 markers. If there is no valid data, the query returns 9.9E37.

Query Syntax: :MACHine{112}:TWAVeform:TMAXimum?

Returned Format: [:MACHine{112}:TWAVeform:TMAXimum] <time_value> <NL>

where

Example:

HP 16528/16538
Programming Reference

:: = real number

10 DIM Tx$ [100]
20 OUTPUT·XXX;":MACHINE1:TWAVEFORM:TMAXIMUM?"
30 ENTER XXX; Tx$
40 PRINT Tx$
50 END

TWAVeform Subsystem
19-21

TMlNimum

TMlNimum

Query Syntax:

Returned Format:

query

The TMINimum query returns the value of the minimum time between
the X and O markers. If there is no valid data, the query retums 9.9F;3'1.

: MACHine { 1 | 2} :TWAVeform :TMlNimum?

[:MACHine{1 l2}:TWAVeform:TMlNimuml <time_value > < NL>

where:

< time value > r = tgal number

Example: 10 DIlt Tm$ [1oo]
?0 OUTPUT XXX ; " :I"IACHINEl : TTJAVEFORM : Tt-|INIMUI-l?"

30 ENTER XXX; Tm$

40 PRINT Tm$

50 END

TWAVeform Subsystem
19-22

HP 16528/16538
Programming Reference

TMINimum

TMINimum query

The TMINimum query returns the value of the minimum time between
the X and 0 markers. If there is no valid data, the query returns 9.9E37.

Query Syntax: :MACHine{112}:TWAVeform:TMINimum?

Returned Format: [:MACHine{112}:TWAVeform:TMINimum] <time_value> <NL>

where:

<time_value>

Example:

TWAVeform Subsystem
19-22

:: = real number

10 DIM Tm$ [100]
20 OUTPUT XXX;":MACHINE1:TWAVEFORM:TMINIMUM?"
30 ENTER XXX; Tm$
40 PRINT Tm$
50 END

HP 16528/16538
Programming Reference

VRUNs

VRUNs

HP 16528.116538
Programming Reference

query

The VRUNs queryreturns the number of valid runs and total number of
rns made. Valid runs are those where the pattern search for both the X
and O markers was su@sssful resulting in valid delta time measurements.

Query Syntax: :MAGHine{1 l2}:TWAVeform:VFUNs?

RetUrned FOrmat: [:MAGHine{l12}:TWAVeform:VRUNs] <valid_runs>,<total_runs> <NL>

where:

<valid_runs> :: = zero or positiw intsgor
<total runs > :: = zgro or positive integer

Example: 10 DrM vr$ [1oo]
20 0UTPUT XXX ; " :l.lACHINEI : TI'IAVEF0RM : VRUNS?"

30 ENTER XXX; Vr$

40 PRINT Vr$

50 IND

TWAVelorm Subsystem
1$,23

VRUNs

VRUNs

query

The VRUNs query returns the number ofvaIid runs and total number of
runs made. VaIid runs are those where the pattern search for both the X
and 0 markers was successful resulting in valid delta time measurements.

Query Syntax: :MACHine{112}:TWAVeform:VRUNs?

Returned Format: [:MACHine{112}:TWAVeform:VRUNs] <valid_runs>, <total_runs> < NL>

where:

< valid_runs>

<total_runs>

Example:

HP 16528/16538
Programming Reference

:: = zero or positive integer

:: = zero or positive integer

10 DIM Vr$ [100]
20 OUTPUT XXX;":MACHINEl:TWAVEFORM:VRUNS?"
30 ENTER XXX; Vr$
40 PRINT Vr$
50 END

TWAVeform SUbsystem
19-23

XCONdition

XCONdition command/query

The XCONdition command specifies where the X marker is placed. The
X marker can be placed on the entry or exit point of the XPATtern when
in the PATTern marker mode.

The XCONdition queryreturns the current sening.

COmmand Syntax :MACHine{l l2}:TWAVeform:XGONdirion {ENTering lDfiing}

Example: 0UTPUT xxX; ":IIACHINEl :TttAVEFoRil:XC0I{DITIoN EI{TERII{G"

Query Syntax :MACHine{1 l2}:TWAVeform:XCONdition?

Returned Format: [:MACHine{1 l2}:TWAVeform:XCONdition] {ENTering lDfiing} < NL>

Example: 10 DrM xc$ [1oo]
20 0UTPUT XXX; ": IIIACHINEI : TbJAVEF0RM:XC0NDITI0N?"

30 ENTER XXX; Xc$

40 PR I NT Xc$

50 END

TWAVeform Subsystem
19-24

HP 16529,,/16538
Programming Reference

XCONdition

XCONdition

Command Syntax:

Example:

Query Syntax:

Returned Format:

Example:

TWAVeform Subsystem
19-24

command/query

The XCONdition command specifies where the X marker is placed. The
X marker can be placed on the entry or exit point of the XPATtem when
in the PATTem marker mode.

The XCONdition query returns the current setting.

:MACHine{1/2}:TWAVeform:XCONdition {ENTering IEXITing}

OUTPUT XXX; ":MACHINE1:TWAVEFORM:XCONDITION ENTERING"

:MACHine{112}:TWAVeform:XCONdition?

[:MACHine{1/2}:TWAVeform:XCONdition] {ENTering IEXITing} < NL>

10 DIM Xe$ [100]
20 OUTPUT XXX;":MACHINE1:TWAVEFORM:XCONDITION?"
30 ENTER XXX; Xe$
40 PRINT Xe$
50 END

HP 16528/16538
Programming Reference

XOTIme

XOT|me guery

The XOTime query returns the ti-e from the X marker to the O marker.
If data is not valid, the query returns 9.9837.

: MACHine { 1 | 2} :TWAVeform :XOTime?

[:lvlACHine{ 1l2I:TWAVeform:XOTime] <time_value > < NL>

Query Syntax:

Returned Format:

where:

<time_value > :: = real number

Example: 10 Dlt{ xotg [too]
20 0UTPUT XXX ; " : MACHINEl : TbJAVEF0RM : XOTII'|E?"

30 ENTER XXX; Xot$

40 PR I NT Xot$

50 END

HP 16528/16538
Programming Reference

TWAVeform Subsystem
1g-25

XOTime

XOTime

query

The XOTime query returns the time from the X marker to the 0 marker.
If data is not valid, the query returns 9.9E37.

Query Syntax: :MACHine{112}:TWAVeform:XOTime?

Returned Format: [:MACHine{112}:TWAVeform:XOTime] <time_value> <NL>

where:

Example:

HP 16528/16538
Programming Reference

:: = real number

10 DIM Xot$ [100]
20 OUTPUT XXX;":MACHINE1:TWAVEFORM:XOTIME?"
30 ENTER xxx; Xot$
40 PRINT Xot$
50 END

TWAVeform Subsystem
19-25

XPATtern

XPATtern

Gommand Syntax:

where:

< label_name > :: = string of up to 6 alphanumeric characters
<labelpattern> :: = "{#B{01 1 lX} . ., I

#o{011l2l314l516l7lx} . . .
I

#Htolll2lsl4lsl6lTlslslAlBlclDlElFlx) . . . I

{01 1 12 l3 l4 l5 l6 l7l8le} . . . }"

EXAMPIE: OUTPUT XXX ;'' :I,IACHINEl : TbJAVEFORM:XPATTERN'A"'511'''

TWAVeform Subsystem
1$.26

command/query

The XPATtern command allows you to construct a pattern reco gn:g:er
term for the X marker which is then used with the XSEarch criteria and
XcoNdition when moving the marker on patterns. Since this command
deals with only one label at a time, a complete specification could require
several invocations.

When the value of a pattern is e{pressed in binary, it represents the bit
values for the label inside the pattern recogrizer term. In whatever base
is used the value must be between 0 and ztt - 1, since a label may not have
more than 32 bits. Because the < label3attern > ptrameter may contain
don't cares, it is handled as a string of characters rather than a number.

The)GATtern Query, in pattern marker mode, returns the pattern
specification for a given label neme. In the time marker mode, the query
returns the pattern under the X marker for a given label. If the X marker
is not placed on valid data, don't cares (XX...X) are returned.

:MACHine{1 | 2}:TWAVeform:XPATtern < label_name), (label_pattern >

HP 16528/16s38
Programming Reference

XPATtern

XPATtern command/query

The XPA Ttern command allows you to construct a pattern recognizer
term for the X marker which is then used with the XSEarch criteria and
XCONdition when moving the marker on patterns. Since this command
deals with only one label at a time, a complete specification could require
several invocations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern reco~er term. In whatever base
is used, the value must be between 0 and 2 2 - 1, since a label may not have
more than 32 bits. Because the < labelyattern > parameter may contain
don't cares, it is handled as a string of characters rather than a number.

The XPA Ttern query, in pattern marker mode, returns the pattern
specification for a given label name. In the time marker mode, the query
returns the pattern under the X marker for a given label. If the X marker
is not placed on valid data, don't cares (XX...X) are returned.

Command Syntax: :MACHine{112}:TWAVeform:XPATtern <label_name>,<label_pattern>

where:

< label_name>

< label-.pattern >

Example:

TWAVeform Subsystem
19-26

:: = string of up to 6 alphanumeric characters

:: = "{#B{OI1IX} ... I
#Q{OI1121314151617IX} ... I
#H{OI11213141516171819IAIBICIDIEIFIX} ... I
{OI11213141516171819} ... }"

OUTPUT XXX; ":MACHINE1:TWAVEFORM:XPATTERN 'A', '511'"

HP 16528/16538
Programming Reference

XPATtern

QUery Syntax: :MACHine{1 l2}:TWAVeform:XpATtern? <tabet_name>

RetUrned FOfmat: [:MACHine{l l2}:TWAVeform:XPATtem] <tabet_name>,<labelpattern> <NL>

Example: 10 DIr.t xp$ ttool
20 OUTPUT XXX; ":I-IACHINEl:TIJAVEF0RM:XPATTERN? 'A' ''
30 ENTER XXX; Xp$

40 PR I NT xp$

50 END

HP 16528/16s38
Programming Reference

TWAVelorm Subsystem
19-27

XPATtern

Query Syntax: :MACHine{112}:TWAVeform:XPATtern? <label_name>

Returned Format: [:MACHine{112}:TWAVeform:XPATtern] < label_name>, <Iabelyattern > < NL>

Example: 10 DIM Xp$ [100]

20 OUTPUT XXX;":MACHINE1:TWAVEFORM:XPATTERN? 'A'"

30 ENTER xxx; Xp$

40 PRINT Xp$

50 END

HP 16528/16538
Programming Reference

TWAVeform Subsystem
19-27

XSEarch

XSEarch

TWAVeform Subsystem
1$28

command/query

The XSEarch command defines the search criteria for the X marker
which is then used with the associated XPATtern rcengnirnr specification
and the XCONdition when noving markers on patterns. The origin
paremeter tells the marker to begin a search with the trigger. The
oeclurence parameter determines which occurrence of the XPATtern
recngnrzer specification" relative to the origin, the marker actually
searches for. An oocurrence of 0 (zero) places a marker on the origin.

The XSEarch query returns the search criteria for the X marker.

COmmand Syntax :MACHine{l l2}:TWAVeform:XSEarch <occurronce >, <origin >

where:

<origin> ::= TRlGger

<o@urenoe> ::= integerfrom -9999to +99$)

EXAMPIE: OUTPUT XXX ; " : }IACHINEl : TUAVEFORM:XSEARCH,+10, TRIGGER''

QUefy Syfftax: :MACHine{1 l2}:TWAV€torm:XSEarch? <occurrencr>,<origin>

Returned Format: [:MACHine{112}:TWAVeform:XSEarch] <occurrencs>,<origin> <NL>

Example: 10 DIt',t xs$ tlool
20 0UTPUT XXX ; " : I'IACHINE1 : TLTAVEFORM :XSEARCH?"

30 ENTER XXX; Xs$

40 PR I NT Xs$

50 END

HP 16s28/16s38
Programming Reference

XSEarch

XSEarch command/query

The XSEarch command defines the search criteria for the X marker
which is then used with the associated XPA Ttern recognizer specification
and the XCONdition when moving markers on patterns. The origin
parameter tells the marker to begin a search with the trigger. The
occurrence parameter determines which occurrence of the XPATtem
recognizer specification, relative to the origin, the marker actually
searches for. An occurrence of 0 (zero) places a marker on the origin.

The XSEarch query returns the search criteria for the X marker.

Command Syntax: :MACHine{112}:TWAVeform:XSEarch <occurrence>,<origin>

where:

<origin>

< occurrence >

Example:

Query Syntax:

Returned Format:

Example:

TWAVeform Subsystem
19-28

::= TRIGger

:: = integer from -9999 to +9999

OUTPUT XXX; ":MACHINE1:TWAVEFORM:XSEARCH,+10,TRIGGER"

:MACHine{112}:TWAVeform:XSEarch? < occurrence>, < origin>

[:MACHine{112}:TWAVeform:XSEarch] <occurrence>, <origin> <NL>

10 DIM Xs$ [100]
20 OUTPUT XXX;":MACHINE1:TWAVEFORM:XSEARCH?"
30 ENTER XXX; Xs$
40 PRINT Xs$
50 END

HP 16528/16538
Programming Reference

XTIMe

XTIMe

HP 16528/16538
Programming Reference

:f+ffi H?rrllTi1""ht",-#'#'ff Hlt"""-,#:'
The XTIMe query returns the X marker position in time. If data is not
valid, the query returns 9.9E37.

COmmand Syntax: :MACHine{1 l2}:TWAVoform:XTtMe <time_vatue>

where:

<time_value > lt = resl number from -2.5Ks to +2.5Ks

Example: ourpur)oo(":MAcHtNEl:TWAVEFoRM:xIIME 40.0E€"

Query Syntax! :MACHine{1 l2}:TWAVeform:XTlMe?

Returned Format: [:MACHine{ 1 l2I:TWAVeform:XTlMe] <time-value > < NL>

Example: 10 DtM xt$ tlml
20 O UT P UT)0C(" : MAC H I N E 1 : TWAVEFO RM : Xl' I M E? "

30 ENTER)OOC Xt$

40 PRINT Xt$

50 END

command/query

TWAVelorm Subsystem
1g-29

XTIMe

XTIMe

command/query

The XTIMe command positions the X marker in time when the marker
mode is TIME. If data is not valid, the command performs no action.

The XTIMe query returns the X marker position in time. If data is not
valid, the query returns 9.9E37.

Command Syntax: :MACHine{112}:TWAVeform:XTIMe <time_value>

where:

<time_value>

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

:: = real number from - 2.5Ks to +2.5Ks

OUTPUT XXX; t1:MACHINEl :TWAVEFORM:XTIME 4O.0E-6"

:MACHine{112}:TWAVeform:XTIMe?

[:MACHine{112}:TWAVeform:XTIMe] <time_value> < NL>

10 DIM Xt$ [100]

20 OUTPUT XXX;":MACHINEl :TWAVEFORM:XTIME?"

30 ENTER XXX; Xt$

40 PRINT Xt$

so END

TWAVeform Subsystem
19-29

SYMBoI Subsystem 20
lntroduction

HP 16s28/16538
Programming Relerence

The SY-il,IBol subsystem contains the commands that allow you to define
slmbols on the controller and download them to the HP 16528,1538 logic
analyznr. The commands in this subsystem:ue:

o BASE
o PATTern
. RANGe
o REMove
o WIDTh

Figure 2O-1. SYMBoI Subsystem Diagram

SYMBoI Subsystem
zGL1

BINo r y

HEXodec r mo I

symbo l-norne

s top-vo lue

pottern-volue

symbo | -nome

s tor t-vo I ue

width-voiue

SYMBol SUbsystem 20
Introduction The SYMBol subsystem contains the commands that allow you to define

symbols on the controller and download them to the HP 1652B/53B logic
analyzer. The commands in this subsystem are:

• BASE

• PATfem

• RANGe

• REMove

• WIDTh

18510/SX10

HP 16528/16538
Programming Reference

Figure 20-1. SYMBol Subsystem Diagram

SYMBol Subsystem
20-1

label name : string of up to 6 alphanumeic characten
slmbol_name : string of up to 16 alphanumeic characten
pattrm_value : "{#B{0lIlX}.."

I

#Q{ol1l2l3l4l5l6 l7lx} . . .
I

#H{0l ll2l3l4lsl6l7l8lelAlBlclD I EIFlx} . . .
I

{ol112l314lsl617l8l e} . . . }"
start_value : ,{#B{0ll }... I

#Q{ol1l2l3l4l5l6l7I . . .
I

#H{011l2l3l4l5l6l7lslelAlBlclDlE lF} . . . I

{oll12l314ls1617l8le} . . . }'
stop_value : .{#8{0|11}...

I

#Q{ol1l2l3l4lsl6l7I . . .
I

#H{01 ll2l3l4lsl6lTlslelAlBlclDlE lF} . . .
I

{ol1l2l3l4lsl6l7l8l e} . " " }'
width_value : integer from I to 16

SYMBoI Subsystem
2&.2

Figure 20.L SYMBol Subsystem Syntax Diagram (continued)

HP 16528/16538
Programming Reference

label_name = string ofup to 6 alphanumeric characters
symbol_name = string ofup to 16 alphanumeric characters
pattern_value = "{#B{OllIX} .. 0 I

#Q{OI112131 4151617IX} ... I
#H{OI11213141516171819IAIBICIDIEIFIX} 0 •• I
{OI11213141516171819} ... }"

start_value = "{#B{Oll} . .. I
#Q{OI112131 4151617} ... I
#H{OI11213141516171819IA IB ICID IEIF} . .. I
{OI112131 41516171819} ... }"

stop_value = "{#B{Oll} . .. I
#Q{OI1121314151617} ... I
#H{OI11213141516171819IA IBICIDIEIF}. o. I
{OI11213141516171819}.oo }"

width_value = integerfrom 1 to 16

Figure 20-1. SYMBol Subsystem Syntax Diagram (continued)

SYMBol Subsystem
20-2

HP 1652B/1653B
Programming Reference

SYMBoI

SYMBoI

HP 16528/16538
Programming Relerence

selector

The SYMBoI selector is used as a part of a compound header to access

tle co--ands used to create symbols. It always follows the MACHine
selector because it selects a branch directlv below the MACHine level in
ths command tree.

Command Syntax: :MACHine{1 l2}:SYMBol

Example: oUTPUT xxX; " :lrlACHtrNEl : sYt'{B0L : BASE'DATA" BINARY"

SYMBoI Subsystem
2G3

SYMBol

Command Syntax:

Example:

HP 16528/16538
Programming Reference

SYMBol

selector

The SYMBol selector is used as a part of a compound header to access
the commands used to create symbols. It always follows the MACHine
selector because it selects a branch directly below the MACHine level in
the command tree.

:MACHine{112}:SYMBoI

OUTPUT XXX;":MACHINEl:SYMBOL:BASE 'DATA', BINARY"

SYM801 Subsystem
20-3

BASE

BASE

SYMBoI Subsystem
2Q-a

command

The BASE @mmand sets the base in which slmhls for the specified label
will be displayed in the slmbol menu. It also specifies the base in which
the slmbol offsets are displayed when symbols are used.

d BINary is not available for labels with more than 20 bits assigned. In this
NOtg - case the base will default to HEXadecimal.

COmmand Syntax: :MACHine{1 I2}:SYMBo|:BASE < label_name) , (base value >

where:

< label_name > :: = string of up to 6 alphanumeric characters

< base_value > :: = {BlNary | HDGdecimal I OCTaI I DECimal I ASCii}

Example: oUTPUT xXX ; " :MACHINEl : SYMBOL : BASE', DATA

"
HEXADECIMAL"

HP 16528/16538
Programming Reference

BASE

BASE

I

Note '"

Command Syntax:

where:

< label_name>

<base_value>

Example:

SYMBol Subsystem
20-4

command

The BASE command sets the base in which symbols for the specified label
will be displayed in the symbol menu. It also specifies the base in which
the symbol offsets are displayed when symbols are used.

BINary is not available for labels with more than 20 bits assigned. In this
case the base will default to HEXadecimal.

:MACHine{112}:SYMBoI:BASE <Iabel_name>,<base_value>

:: = string of up to 6 alphanumeric characters

:: = {BINary I HEXadecimal I OCTal I DECimal I ASCii}

OUTPUT XXX;":MACHINE1:SYMBOL:BASE 'DATA' ,HEXADECIMAL"

HP 16528/16538
Programming Reference

PATTern

PATTern

HP 16529.116538
Programming Reference

command

The PATTern @mmand allows you to create a pattern slmbol for the
specified label.

Because don't cares (X) are allowed in the pattern value, it must always be
expressed as a string. You may still use different bases, though don't cares
cannot be used in a decimal number.

Command Syntax :MACHine{1 l2i:SYMBol:PATTerrxlabel_name>,<syrnbol_name>,<pattern_value>

where:

<labol_name> ::= string of up to6alphanumgriccharacters
<syrnbol_name> :: = sring ol up to 16 alphanumeric charasters

<pattern_value> ii='{#B{011 lX}... I

#o{01 I l21314l51617lx} . . . I

#H{01 I l2l3l4 lsl6lTlslelAlBlcl Dl ElFlx} . . . I

{01 1 l2l3l4l5l6l7l8le} . . . }.

Example: oUTPUT xxx;":l,lAcHINEl:SYMB0L:PATTERN ',STAT" 'l,lEl-l_RD"'#Hol.xx"'

SYMBoI Subsystem
20..5

PATIern

PATIern

command

The PATTern command allows you to create a pattern symbol for the
specified label.

Because don't cares (X) are allowed in the pattern value, it must always be
expressed as a string. You may still use different bases, though don't cares
cannot be used in a decimal number.

Command Syntax: :MACHine{112}:SYMBoI:PATTerrKlabel_name>,<symbol_name>,<pattern_value>

where:

< label_name>

<symbol_name>

< pattern_value>

Example:

HP 16528/16538
Programming Reference

:: = string of up to 6 alphanumeric characters

:: = string of up to 16 alphanumeric characters

:: = ·{#B{OI1IX} ... 1
#Q{OI1121314151617IX} ... 1
#H{OI11213141516171819IAIBICIDIEIFIX} ... I
{OI11213141516171819} ... }"

OUTPUT XXX;":MACHINE1:SYMBOL:PATTERN 'STAT', 'MEM_RD', '#HOIXX'"

SYMBol Subsystem
20-5

RANGe

RANGe

SYMBoI Subsystem
2G6

The RANGe command allows you to create a range symbol sonlaining a
start value and a stop value for the specified label. The values may be in
binary (#B), octal (#Q), hexadecimal (#H) or decimal (default). You
may not use ndon't careso in any base.

Gommand Syntax: :MAGHine{112}:SYMBo|:MNGe <label_name>,<symbol_name>,<start_value>,
<stop_value >

where:

<label_name> ;:= stringof upto6alphanumericcharacters
<symbol_name> ::= string of upto 16alphanumoriccharacters

<start_vatue> ::= ,t#A{Olt}...
I

#o{011 l2l3l4lsl617}... I

#H{01 1 l2l3l4l5l6lTl8lelAlBlclDlElF} . . . I

{0l1 l2l3l4l5l6l7l8le} .., i"
<stop_value> ::= "{#BiOl1}... I

#o{ol1 12l3l4lsl6l7}... I

#H{01 1 l2l3l4lst6lTlslelAlBlclDlElF} . . . I

t0l1 l2l3l4lsl6l7l8le) ...)"

command

HP 16528/16s38
Programming Reference

RANGe

RANGe command

The RANGe command allows you to create a range symbol containing a
start value and a stop value for the specified label. The values may be in
binary (#B), octal (#0), hexadecimal (#H) or decimal (default). You
may not use "don't cares" in any base.

Command Syntax: :MACHine{112}:SYMBoI:RANGe <Iabel_name>,<symbol_name>,<start_value>,

< stop_value>

where:

< label_name>

<symbol_name>

< start_value>

< stop_value>

Example:

SYMBol Subsystem
20-6

:: = string of up to 6 alphanumeric characters

:: = string of up to 16 alphanumeric characters

:: = "{#B{OI1} ... I

#Q{OI1121314151617} ... I

#H{OI11213141516171819IAI BICI 01 EI F} ... I

{OI11213141516171819} ... }"

::= "{#B{OI1} ... I

#Q{OI1121314151617} ... I

#H{OI11213141516171819IAI B ICI 01 EI F} ... I

{OI112131415161 7 1819} ... }"

OUTPUT XXX;":MACHINE1:SYMBOL:RANGE 'STAT', 'IO_ACC', '0', 'IHOOOF'"

HP 16528/16538
Programming Reference

REMove

REMove

HP 1652B,/16s38
Programming Reference

command

The REMove command deletes all sprbols from a specified machine.

command syntax: :MACHine{1 l2}:sYMBor:REMove

Example: oUTPUT xXX ; " : t'tACHINE1 : SyilBoL : REI'|0VE"

SYMBoI Subsystem
2G^7

REMove

Command Syntax:

Example:

HP 16528/16538
Programming Reference

REMove

command

The REMove command deletes all symbols from a specified machine.

:MACHine{112}:SYMBoI:REMove

OUTPUT XXX;":MACHINE1:SYMBOL:REMOVE"

SYMBol SUbsystem
20-7

WIDTh

WIDTh command

The WIDTh command specifies the width (number of characters) in
which the slmbol narttes will be displayed when slmbols are used.

not" ;;$ S:"tr};:
command does not affect the displayed length of the symbol

COmmand Syntax: :MACHine{1 l2i:SYMBol:WDTh <label_name>,<width_value>

where:

< label_name > :: : string of up to 6 alphanumeric characters

<width_value > :: = integer from 1 to 16

Example: 0UTPUT XXX; " :I,IACHINEl : SYMBoL :UIDTH'DATA" g cc

SYMBoI Subsystem
20-g

HP 16528/16538
Programming Reference

WIDTh

WIDTh

I~INote ,.

Command Syntax:

where:

< label_name>

<width_value>

Example:

SYMBol Subsystem
20-8

command

The WIDTh command specifies the width (number of characters) in
which the symbol names will be displayed when symbols are used.

The WIDTh command does not affect the displayed length of the symbol
offset value.

:MACHine{112}:SYMBoI:WIDTh < label_name>, <width_value>

:: = string of up to 6 alphanumeric characters

:: = integer from 1 to 16

OUTPUT XXX;":MACHINEl:SYMBOL:WIDTH 'DATA',9 "

HP 1652B/16538
Programming Reference

SCOPe Subsystem 21

IntfOdUCtiOn The SCoPe subsystem provides access to the commands and the
oscilloscope subsystem cornmands that control the basic operation of the
oscilloscope. At the SCOPe subsystem level is a command that turns the
oscilloscope on or off (SMODe), specifies how the oscilloscope is Armed
(ARM), and theAUToscale command.

Additionally, the following subsystems are a part of the SCOPe subsystem.
Each is explained in a separate chapter.

o CHANnel subsystem (chapterZ2)
r TRIGger subsystem (chapter 23)
o ACQuire subsystem (chapter 24)
o TTMebase subsystem (chapter 25)
o WAVeform subsystem (chapter 26)
o MEASure subsystem (chapter 77)

Not all scope-related functions can be duplicated with programming
instructions. If you are unable to get a desired configuration strictly
througb programming instruction" try the following steps:

1". Manually configure the HP L652B153B through the front panel.

2. Save configuration to a disk (through the front panel or through the
: t,lMEM : ST0RE "CONF I G", " Setups " instruction).

Nowyou can use the command uuru:LoAD "C0NFIG" to load in the desired
configuration.

HP 16528/16538
ProEramming Relerence

SCOPe Subsystem
21-1

SCOPe SUbsystem 21
Introduction

HP 16528/16538
Programming Reference

The SCOPe subsystem provides access to the commands and the
oscilloscope subsystem commands that control the basic operation of the
oscilloscope. At the SCOPe subsystem level is a command that turns the
oscilloscope on or off (SMODe), specifies how the oscilloscope is Armed
(ARM), and the AUToscale command.

Additionally, the following subsystems are a part of the SCOPe subsystem.
Each is explained in a separate chapter.

• CHANnel subsystem (chapter 22)

• TRIGger subsystem (chapter 23)

• ACQuire subsystem (chapter 24)

• TIMebase subsystem (chapter 25)

• WA Veform subsystem (chapter 26)

• MEASure subsystem (chapter 27)

Not all scope-related functions can be duplicated with programming
instructions. If you are unable to get a desired configuration strictly
through programming instruction, try the following steps:

1. Manually configure the HP 1652B/53B through the front panel.

2. Save configuration to a disk (through the front panel or through the
:MMEM: STORE "CONFIG" , "Setups" instruction).

Now you can use the command MMEM:LOAD "CONFIG" to load in the desired
configuration.

SCOPe Subsystem
21-1

OFFIO

arm source : {RUN I Iu{ACHineU | 2} | BNC}

SCOPe Subsystem
21-2

Figure 21-1. SCOPe Subsystem Syntax Diagram

HP 1652B/16s38
Programming Reference

AUTosca I e~-------------~

01652S09

arm_source = {RUN IMACHine{l 12} IBNC}

Figure 21-1. SCOPe Subsystem Syntax Diagram

SCOPe Subsystem
21-2

HP 16528/16538
Programming Reference

SCOPe

SCOPe

HP 16528/16538
Programming Relerence

selector

The SCOPe selector is used to indicate the beginning of a compound

##ii:1fi,#ilr##j,T#ffi
,',5r"",,';#::r':il,:-*

Command Syntax: :scoPe

Example: oUTPUT XXX; " :scoPE:TRIGGER:SL0PE NEGATIVE"

SCOPe Subsystem
21-3

SCOPe

Command Syntax:

Example:

HP 16528/16538
Programming Reference

SCOPe

selector

The SCOPe selector is used to indicate the beginning of a compound
command (or query) for a function within the SCOPe subsystem. Since
SCOPe is a root-level command, it will normally appear as the fIrst
element of a compound header.

:SCOPe

OUTPUT XXX; ":SCOPE:TRIGGER:SLOPE NEGATIVE"

SCOPe Subsystem
21-3

Arm

Arm

SCOPe Subsystem
21-4

command/query

The ARM co-mand specilies the arming source of the oscilloscope.

The ARM query returns the source that the oscilloscope is armed by.

Command Syntax: :SCOPe:ARM <arm_source>

where:

<arm sourc€> ::= {RUN lMACHine{l12} IBNC}

Example: oUTPUT xXX; " : SCOPE : ARM: MACHI Ntz"

Query Syntax: :scoPe:ARM?

Returned Format: [:SCOPe:ARM] < arm_source >

Example: to DIt't String$[1oo]
20 0UTPUT XXX; " : SCOPE : ARM?"

30 ENTER XXX; String$
40 PRINT String$
50 END

HP 1652B.,/16s38
Programming Reference

Arm

Arm command/query

The ARM command specifies the arming source of the oscilloscope.

The ARM query returns the source that the oscilloscope is armed by.

Command Syntax: :SCOPe:ARM <arm_source>

where:

<arm_source >

Example:

Query· Syntax:

Returned Format:

Example:

SCOPe Subsystem
21-4

:: = {RUN I MACHine{112} I BNC}

OUTPUT XXX;":SCOPE:ARM:MACHINE2"

:SCOPe:ARM?

[:SCOPe:ARM] <arm_source>

10 DIM Str;ng$[lOO]
20 OUTPUT XXX;":SCOPE:ARM?"
30 ENTER XXX; StringS
40 PRINT StringS
50 END

HP 16528/16538
Programming Reference

AUToscale

AUToscale command

The AUToscale command causes the oscilloscope to automatically select
the vertical sensitivity, vertical offset, trigger level and timebase 5strings
for a stable display on one or both channels. The input signal required for
Autoscale must have 6 a-plitude above 10 mV peak, and a frequency
between 50 Hz and 100 MHz..

Command Syntax: :SCOPe:AUToscare

Example: oUTPUT XXX; " : scopE : AUTOscALE"

HP 16s28/16538
Programming Relerence

SCOPe Subsystem
21-5

AUToscale

Command Syntax:

Example:

HP 16528/16538
Programming Reference

AUToscale

command

The AUToscale command causes the oscilloscope to automatically select
the vertical sensitivity, vertical offset, trigger level and timebase settings
for a stable display on one or both channels. The input signal required for
Autoscale must have an amplitude above 10 mV peak, and a frequency
between 50 Hz and 100 MHz..

:SCOPe:AUToscale

OUTPUT XXX;":SCOPE:AUTOSCALE"

SCOPe Subsystem
21-5

SMODe

SMODe

SCOPe Subsystem
21-6

The SMODe command allows the oscilloscope to be turned on or off over
the bus.

The SMODe query returns tle current status of the oscillosocpe.

Command Syntax: :SCOPe:SMODe {ONIOFF}

Example: 0UTPUT XXX; " : SC0pe : St',t0De 0N"

Query Syntax: :SCoPe:SMODe?

Returned Format: [:SCOPe:SMODe] {ON IOFF} < NL >

Exarnple: 10 D r M sm$ [t oo]

20 0UTPUT XXX; ": SC0P[: SM0DE?"

30 ENTER XXX; Sm$

40 PRINT Sm$

50 END

command/query

HP 1652F.116s38
Programming Reference

SMODe

SMODe

Command Syntax:

Example:

Query Syntax:

Returned Format:

Example:

SCOPe Subsystem
21-6

command/query

The SMODe command allows the oscilloscope to be turned on or off over
the bus.

The SMODe query returns the current status of the oscillosocpe.

:SCOPe:SMODe {ON IOFF}

OUTPUT XXX;":SCOPe:SMODe ON"

:SCOPe:SMODe?

[:SCOPe:SMODe] {ONIOFF}<NL>

10 DIM Sm$ [100J
20 OUTPUT XXX;":SCOPE:SMODE?"
30 ENTER XXX;Sm$
40 PRINT Sm$
50 END

HP 16528/16538
Programming Reference

CHANnel Subsystem

IntfOdUCtiOn The CHANnel subsystem co-mands control the channel display and the
vertical axis of the oscilloscope. Each chennel must be programmed
independently for all offset, range and probe functions. The com-ands
are:

o CHANnel
. ge{Jpting
o OFFSet
o PROBe
o RANGe

22

HP 16528,,/16538
Programming Relerence

CHANnel Subsystem
22-1

CHANnel SUbsystem 22
Introduction

HP 16528/16538
Programming Reference

The CHANnel subsystem commands control the channel display and the
vertical axis of the oscilloscope. Each channel must be programmed
independently for all offset, range and probe functions. The commands
are:

• CHANnel
• COUPling
• OFFSet
• PROBe
• RANGe

CHANnel SUbsystem
22-1

: CHANne I chcnnel-number CCUP i i ng

DCFifty

OFFSe t offset-org

OFFSe t?

spoce probe-ore

ron9e_orgsPoce

RANGe?

channelnumber:{/12}
olfset_arg = real number defining the vokage at the center of the display. The ffiet range depends on
the input impedance setting. The offset range for I MQ input is - 125 V to + 125 V The offsefiange for
50Qinprtis -5Vto + 5V.
probe_arg : integer from I througlt INM, specilying the probe attenuation with respect to 1.

range_arg = real number specifying vertical sensitivity. The allowable range is 15 mV to 10 V for a
probe attenuation of 1. The specified ranp is eEtal to 4 times VoltslDiv.

Figure 22-1. CHANnel Subsystem Syntax Diagram

CHANnel Subsystem
22-2

HP 16528./16538
Programming Reference

channel_number

OFFSe l? t------------------~

PROBe? }------------------~~

1~......-------------------
01652502

channel_number = {1 12}
offset_arg = real number defining the voltage at the center ofthe display. The offset range depends on
the input impedance setting. The offset range for 1 MQ input is -125 V to +125 v: The offset range for
50 Q input is -5 Vto + 5 V.
probe_arg = integerfrom 1 through 1000, specifying the probe attenuation with respect to 1.
range_arg = real number specifying vertical sensitivity. The allowable range is 15 mV to 10 Vfor a

probe attenuation of 1. The specified range is equal to 4 times Volts/Dive

Figure 22-1. CHANnel Subsystem Syntax Diagram

CHANnel SUbsystem
22-2

HP 16528/16538
Programming Reference

CHANnel

CHANnel selector

The CHANnel selector is used as part of a compound com-and header to
access the settings found in oscilloscope's ClIANnel menu. It always
follows the SCOPe selector because it selects a branch below the SCOPe
level in the command tree.

Command Syntax: :SCOPe:CMNnet<N>

where:

<N> ::= {t | 2}

Example: 0UTPUT xxx; ":scoPE:CHANNEL2:0FFSET 2.5"

HP 16528/16s38
Programming Reference

CHANnel Subsystem
22-3

CHANnel

CHANnel

selector

The CHANnel selector is used as part of a compound command header to
access the settings found in oscilloscope's CHANnel menu. It always
follows the SCOPe selector because it selects a branch below the SCOPe
level in the command tree.

Command Syntax: :SCOPe:CHANnel < N>

where:

<N>

Example:

HP 16528/16538
Programming Reference

:: = {1 I 2}

OUTPUT XXX; ":SCOPE:CHANNEL2:0FFSET 2.5"

CHANnel Subsystem
22-3

COUPling

COUPling

CHANnel Subsystem
?2-4

The COUPling command sets the input impedance for the selected
channel. The choices are either 1M Obm (DC) or 59 Qhms (DCFifty).

The query returns the current input impedance for the specified channel.

command syntax: :scoPe:cr-rANner{1 l2}:couPring {DC I DCFifry}

Example: oUTPUT XXX ; " : sc0PE : cHANNELI : CoUPLING DC"

Query Syntax: :SCOPe:CHANnel{1 l2}:COUPting?

Returned Fonxdt: [:SCOPe:CHANneltl l2]:COUPlingl {DC lDCFifty}. NLt

Example: 10 DrM ccg[1oo]

20 0UTPUT XXX; " :SC0PE :CHANNELI :COUPLING?"

30 ENTER XXX; Cc$

40 PRINT Cc$

50 END

command/query

HP 16s28/16538
Programming Reference

COUPling

COUPling

Command Syntax:

Example:

Query Syntax:

Returned Format:

Example:

CHANnel SUbsystem
22-4

command/query

The COUPling command sets the input impedance for the selected
channel. The choices are either 1M Ohm (DC) or 50 Ohms (DeFifty).

The query returns the current input impedance for the specified channel.

:SCOPe:CHANnel{112}:COUPling {DC IDCFifty}

OUTPUT XXX;":SCOPE:CHANNELl:COUPLING DC"

:SCOPe:CHANnel{112}:COUPling?

[:SCOPe:CHANnel{112}:COUPling] {DC IDCFifty} < NL>

10 DIM Cc$[lOO]
20 OUTPUT XXX;":SCOPE:CHANNELl:CQUPLING?"
30 ENTER XXX;Cc$
40 PRINT Cc$
50 END

HP 16528/16538
Programming Reference

OFFSet

OFFSet

Example: 1o DIM cog[1oo]

?0 0UTPUT XXX; ": SC0PE: CHANNEL1 :0FFSIT?"

30 ENTER XXX;Co$

40 PRINT Co$

50 END

HP 16528/16538
Programming Reference

command/query

The OFFSet command sets the voltage that is represented at center
screen for the selected channel. The allowable offsets for 1.:1. probes are:

t 2V < T4mYldw

= 10 V between 74 mY ldl and 370 mV/div
+ 50V between 370 mV/div and 1.85 V/div
+ I25V > 1.85V/div

When the input impedance is set to 50 Q ths 6arimrrm offset is e,2Y f.or
V/Div settings less than 74mY and is

=5
V for V/Div settings greater

than 74 mV.

The offset value is recompensated whenever the probe attenuation factor
is changed.

The query returns the current value for the selected channel.

Gommand Syntax: :SCOPe:CHANnel{1 l2}:OFFSet <value>

where:

<value> ::: i- 250Vto + 25OVmax.at1MO | -5Vto + 5Vat50Qi

Example: oUTPUT XXX; " : scoP : CHANI :oFFS 1 . 5"

Query Syntax: :SCOPe:CHANnel{1 l2}:OFFSet?

Returned Format: [:SCOPe:CHANnel{ 1|12.1:OFFSet] <value > < NL>

CHANnel Subsystem
22-5

OFFSet

OFFSet

command/query

The OFFSet command sets the voltage that is represented at center
screen for the selected channel. The allowable offsets for 1:1 probes are:

± 2 V < 74 mV/div
± 10 V between 74 mV/div and 370 mV/div
± 50V between 370 mV/div and 1.85 V/div
± 125 V > 1.85 V/div

When the input impedance is set to 50 Q the maximum offset is re 2 V for
V/Div settings less than 74 mV and is ±5 V for V/Div settings greater
than 74 mY.

The offset value is recompensated whenever the probe attenuation factor
is changed.

The query returns the current value for the selected channel.

Command Syntax: :SCOPe:CHANnel{112}:OFFSet <value>

where:

<value> ::= {-250Vto+250Vmax.atlMQ I-SVto+SVat50Q}

Example: OUTPUT XXX;": SCOP: CHANl: OFFS 1.5"

Query Syntax: :SCOPe:CHANnel{112}:OFFSet?

Returned Format: [:SCOPe:CHANnel{112}:OFFSet] <value> <NL>

Example:

HP 16528/16538
Programming Reference

10 DIM CoS [100J

20 OUTPUT XXX;":SCOPE:CHANNEL1:0FFSET?"
30 ENTER XXX;Co$
40 PRINT Co$
50 END

CHANnel Subsystem
22-5

PROBe

PROBe command/query

The PROBe command specifies the attenuation factor for an external
probe connected to a channel. The command changes ths gfuennsl yshage

references such as 1enge, offset, trigger levels and automatic
measurements. The actual sensitivity is not changed at the channel input.
The allowable probe attenuation factor is an integer from 1to 1000.

The query returns the probe attenuation factor for the selected channel.

Gommand syntax: :scoPe:cFlANnel{1 l2}:PRoBe <atten>

where:

< atten > :: = integer from 1 to 1000

Example: oUTPUT XXX; " : sc0Pe: CHANI : PR0B 10"

Query Syntax: :SCOPe:CHANnel{1 l2}:PROB€?

Returned Format: [:SCOPe:GHANnel{1 l2}:PROB€J <atten > < NL>

Example: 10 DIr.t Att$ [1oo]
20 0UTPUT XXX; ": SCOPI: CHANNEL1 : PROBE?"

30 ENTER XXX;Att$

40 PR I NT Att$
50 END

CHANnel Subsystem
?2-6

HP 16528./16538
Programming Reference

PROBe

PROBe command/query

The PROBe command specifies the attenuation factor for an external
probe connected to a channel. The command changes the channel voltage
references such as range, offset, trigger levels and automatic
measurements. The actual sensitivity is not changed at the channel input.
The allowable probe attenuation factor is an integer from 1 to 1000.

The query returns the probe attenuation factor for the selected channel.

Command Syntax: :SCOPe:CHANnel{112}:PROBe <atten>

where:

<atten>

Example:

Query Syntax:

Returned Format:

Example:

CHANnel Subsystem
22-6

:: = integer from 1 to 1000

OUTPUT XXX;":SCOPe:CHAN1:PROB 10"

:SCOPe:CHANnel{112}:PROBe?

[:SCOPe:CHANnel{112}:PROBe] <atten> < NL>

10 DIM Att$ [100]
20 OUTPUT XXX;":SCOPE:CHANNEL1:PROBE?"
30 ENTER XXX;Att$
40 PRINT Att$
50 END

HP 16528/16538
Programming Reference

RANGe

RANGe

HP 16528/16538
Programming Reference

command/query

The RANGe co-mand defines the full-scale (4 x Volts/Div) vertical axis
of the selected channel. The values for the RANGe command are
dependent on the current probe attenuation factor for the selected
channel. The allowable renge for a probe attenuation factor of 1:1 is
60 mV to 40 V. For a larger probe attenuation factor, multiply the range
limil fy fts probe attenuation factor.

The RANGe query returns the current range setting.

Command Syntax: :SCOPe:CHANnel{112}:F{ANGe <range>

where:

< range > :: = 60 mV to 40 V for a probe attenuation factor of 1 : 1

Example: oUTPUT xXX; " : scopE :GHANNELI :RANGE 4.9"

Query Syntax: :SCOPe:CHANnel{1 l2}:RANGe?

Returned Format: [:SCOPe:CHANnel{ l lzI:RANGeJ < range > < NL>

Example: to DrM Prg [too]
20 0UTPUT XXX; " : SC0PE : CHANNELI : RANGE?"

30 ENTER XXX; Pr$

40 PRINT Pr$

50 END

CHANnel Subsystem
22-7

RANGe

RANGe

command/query

The RANGe command defmes the full-scale (4 x VoltslDiv) vertical axis
of the selected channel. The values for the RANGe command are
dependent on the current probe attenuation factor for the selected
channel. The allowable range for a probe attenuation factor of 1:1 is
60 mV to 40 V. For a larger probe attenuation factor, multiply the range
limit by the probe attenuation factor.

The RANGe query returns the current range setting.

Command Syntax: :SCOPe:CHANnel{112}:RANGe <range>

where:

<range>

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

:: = 60 mV to 40 V for a probe attenuation factor of 1:1

OUTPUT XXX;":SCOPE:CHANNEL1:RANGE 4.8"

:SCOPe:CHANnel{112}:RANGe?

[:SCOPe:CHANnel{112}:RANGe] <range> <NL>

10 DIM Pr$ [100]
20 OUTPUT XXX;":SCOPE:CHANNEL1:RANGE?"
30 ENTER XXX;Pr$
40 PRINT Pr$
50 END

CHANnel Subsystem
22-7

TRlGger Subsystem 23
Introduction The commands of the TRIGger subsystem allow you to set all the trigger

conditions necessary for generating a trigger. There are two trigger
modes: Edge and Immediate. If a mmmand is valid for the chosen trigger
mode, then that setting will be accepted by the oscilloscope. However, f
the command is not valid for the trigger mode, an error will be generated.
None of the commands of this subsystem are used in conjunction with
Immediate trigger mode. See Figure 23-L for the TRIGger subsystem

symta:r diagra-.

In the Edge trigger mode, the oscilloscope triggers on an edge of a
wavefonn, specified by the SOURce, LEVel, ild SLOPe mmmands. If a
source is not specified, then the cturent source is assumed.

In the Immediate trigger mode, the oscilloscope will trigger by itself when
the arming requirements are met.

The Edge
Trigger Mode

The lmmediate
Trigger Mode

HP 16528/16538
Programming Relerence

TRlGger Subsystem
23-1

TRIGger SUbsystem 23
Introduction

The Edge
Trigger Mode

The Immediate
Trigger Mode

HP 16528/16538
Programming Reference

The commands of the TRIGger subsystem allow you to set all the trigger
conditions necessary for generating a trigger. There are two trigger
modes: Edge and Immediate. If a command is valid for the chosen trigger
mode, then that setting will be accepted by the oscilloscope. However, if
the command is not valid for the trigger mode, an error will be generated.
None of the commands of this subsystem are used in conjunction with
Immediate trigger mode. See Figure 23-1 for the TRIGger subsystem
syntax diagram.

In the Edge trigger mode, the oscilloscope triggers on an edge of a
waveform, specified by the SOURce, LEVel, and SLOPe commands. If a
source is not specified, then the current source is assumed.

In the Immediate trigger mode, the oscilloscope will trigger by itself when
the arming requirements are met.

TRIGger Subsystem
23-1

. TRIGger

level _value : triger level in volts

TRlGger Subsystem
23-2

Figure 23-1. TRlGger Subsystem Syntax Diagram

HP 1652B./16538
Programming Reference

LEVe I?)--------------------------~

\ MODE? }-------------------------------I~

SLOP e ...-----l~ POS i t i v e t-----y---------------i~

SLOPe?)--------------------------~

SOUR c e I----.....t CHANne 11

SOURce?)----------------------------"
01652511

level _value = trigger level in volts

Figure 23-1. TRIGger Subsystem Syntax Diagram

TRIGger Subsystem
23-2

HP 16528/16538
Programming Reference

TRlGger

TRlGger

HP 16528/16s38
Programming Relerence

Ihe TRIGger selector is used as part of a compound com-and header to
ascess the settings found in oscilloscope's Trigger menu. [t always follows
the SCOPe selector because it selects a branch below the SCOPc level in
the command tree.

CommandSyntax: :SGOPe:TRrGger

Example: oUTPUT XXX; ": SC0PE: TRIGGER: CHANNELl ; LEVEL 2.0"

selector

TRlGger Subsystem
23-3

TRIGger

Command Syntax:

Example:

HP 16528/16538
Programming Reference

TRIGger

selector

The TRIGger selector is used as part of a compound command header to
access the settings found in oscilloscope's Trigger menu. It always follows
the SCOPe selector because it selects a branch below the SCOPe level in
the command tree.

:SCOPe:TRIGger

OUTPUT XXX; ":SCOPE:TRIGGER:CHANNEL1;LEVEL 2.0"

TRIGger Subsystem
23-3

LEVEL

LEVEL command/query

The LEVEL command sets the trigger level voltage for the selected
source or path. This command cannot be used in the IMMEDIATE
trigger mode.

The query returns the trigger level for the current path or sour@.

I
ilCi There is no shortform for LEVEL. This is an intentional deviation from

NOtg It the normal truncarion ruie.

Command Syntax: :SCOPe:TR|Gger:LEVEL <value>

where:

<value > :: = Trigger level in volts

b<ample: 0UTPUT XXX; " : SCoPE :TRIG:LEVEL 1.0"

Query Syntax: :SCOPe:TRIGger:LF/EL?

Returned Format: [:SCOPe:TRlGger:LEVELJ <value > < NL>

E><ample: 10 DrM E tg [too]
20 0UTPUT XXX; ": SC0PE: TRIGGER: SOURCE CHANNEL1 ; LEVEL?"

30 ENTER XXX; E l$
40 PRINT E]$

50 TND

TRlGger Subsystem
2I-e

HP 16s2B,116538
Programming Reference

LEVEL

LEVEL

I
Note"

Command Syntax:

where:

<value>

Example:

Query Syntax:

Returned Format:

Example:

TRIGger Subsystem
23-4

command/query

The LEVEL command sets the trigger level voltage for the selected
source or path. This command cannot be used in the IMMEDIATE
trigger mode.

The query returns the trigger level for the current path or source.

There is no shortform for LEVEL. This is an intentional deviation from
the normal truncation rule.

:SCOPe:TRIGger:LEVEL < value>

:: = Trigger level in volts

OUTPUT XXX;":SCOPE:TRIG:LEVEL 1.0"

:SCOPe:TRIGger:LEVEL?

[:SCOPe:TRIGger:LEVEL] <value> < NL>

10 DIM E1$ [100]
20 OUTPUT XXX;":SCOPE:TRIGGER:SOURCE CHANNELl;LEVEL?"
30 ENTER XXX;E1$
40 PRINT E1$
50 END

HP 16528/16538
Programming Reference

MODE

MODE command/query

The MODE com-and allows you to select the trigger mode for the

ff
"".:',fr i:JH"',"*:fff ,iy."'5ffft'h"ff i'ff :xffi "ff "ffi "LEVEL com-and. In the IMMediate trigger mode. the oscilloscope goes

to a freerun mode and does not wait for 3 pigger. The lMMediate mode is
used in armed-by other machine applications.

The query returns the current mode.

COmmand Syntax: :SCOPe:TRlGger:MODE {EDGEllMMediare}

Example: oUTPUT XXX ; " : scopE : TR I GGER : MoDE EDGE"

Query Syntaxr :SCOPe:TRtGger:MODE?

Returned Format: [:SCOPe:TRlGger:MODEJ iEDGE llMMediate] < NL>

Example: 1o DrM Md$ [1oo]
20 OUTPUT XXX; " :SCOPE :TRIGGER:M0DE?"

30 ENTTR XXX;Md$

40 PRINT Md$

50 TND

HP 16s28/16538
Programming Reference

TRlGger Subsystem
23-5

MODE

Command Syntax:

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

MODE

command/query

The MODE command allows you to select the trigger mode for the
oscilloscope. The EDGE mode will trigger the oscilloscope on an edge
whose slope is determined by the SLOPe command at a voltage set by the
LEVEL command. In the IMMediate trigger mode, the oscilloscope goes
to a freerun mode and does not wait for a trigger. The IMMediate mode is
used in armed-by other machine applications.

The query returns the current mode.

:SCOPe:TRIGger:MODE {EDGE IIMMediate}

OUTPUT XXX;":SCOPE:TRIGGER:MODE EDGE"

:SCOPe:TRIGger: MODE?

[:SCOPe:TRIGger:MODE] {EDGE IIMMediate} < NL>

10 DIM Md$ [100J
20 OUTPUT XXX;":SCOPE:TRIGGER:MODE?"
30 ENTER XXX;Md$
40 PRINT Md$
50 END

TRIGger Subsystem
23-5

SLOPe

SLOPe

TRlGger Subsystem
23-6

command/query

The SLOPc co--and selects the trigger slope for the previously
specified trigger soluce. This command can onlybe used in the EDGE
trigger mode.

The query returns the slope of the current trigger source.

Command Syntax: :SCOPe:TRlGger:SLOPe {POSitivelNEGaiive}

Example: oUTPUT XXX; " :scoP :TRIG: S0URCE CHANI ; SLoPE PoS"

Query Syntax: :SCOPe:TRlGger:SLOPe?

Returned Format: [:SCOPe:TRlGger:SLOPe] {POSitive lNEGative} < NL>

Example: to DrM Tsg [1oo]
20 0UTPUT XXX;" : SC0P :TRIG: SCUR CHANI ;SLOP?"

30 ENTER XXX;Ts$

40 PRINT Ts$

50 END

HP 16528/16s38
Programming Reference

SLOPe

SLOPe

Command Syntax:

Example:

Query Syntax:

Returned Format:

Example:

TRIGger Subsystem
23-6

command/query

The SLOPe command selects the trigger slope for the previously
specified trigger source. This command can only be used in the EDGE
trigger mode.

The query returns the slope of the current trigger source.

:SCOPe:TRIGger:SLOPe {POSitive INEGative}

OUTPUT XXX;":SCOP:TRIG:SOURCE CHAN1;SLOPE POSIt

:SCOPe:TRIGger:SLOPe?

[:SCOPe:TRIGger:SLOPe] {POSitive INEGative} < NL>

10 DIM T5$ [100]
20 OUTPUT XXX;":SCOP:TRIG:SQUR CHAN1;SLOP?"
30 ENTER XXX;T5$
40 PRINT T5$
50 END

HP 16528/16538
Programming Reference

SOURce

SOURce command/query

The SOURce command is used to select the trigger souroe and is used for

ilr;::;r;?$3J;a*:H
commands' rhis comnand can onrv

The query returns the current trigger source.

Command Syntax: :SCOPe:TRlGger:SOUBce {CHANnel{112}}

Example: oUTPUT XXX ; " : SCoP : TRIG: S0UR CHAN1"

Query Syntax! :SCOPe:TRlGger:SOURce?

Returned Format: [:SCOPe:TRlGger:SOURce] {CHANnel{1 l2}} < NLt

Example: 10 DIM Tso$ [1oo]
20 OUTPUT XXX; " : SCOPE : TRIGGER: SOURCE?"

30 ENTER XXX; Tso$

40 PRINT Tso$

50 END

HP 16s28/16538
Programming Relerence

TRlGger Subsystem
23-^7

SOURce

Command Syntax:

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

SOURce

command/query

The SOURce command is used to select the trigger source and is used for
any subsequent SLOPe and LEVEL commands. This command can only
be used in the EDGE trigger mode.

The query returns the current trigger source.

:SCOPe:TRIGger:SOURce {CHANnel{112}}

OUTPUT XXX;":SCOP:TRIG:SOUR CHAN!"

:SCOPe:TRIGger:SOUAce?

[:SCOPe:TRIGger:SOURce] {CHANnel{112}} < NL>

10 DIM Tso$[100}
20 OUTPUT XXX;":SCOPE:TRIGGER:SOURCE?"
30 ENTER XXX;Tso$
40 PRINT Tso$
50 END

TRIGger Subsystem
23-7

):l­
n

"c=t­
CD
en
c
D"
(I)

'<
!l-
CD
3

ACOuire Subsystem 24
lntroduction The ACQuire subsystem @mmands are used to select the tlpe of

acquisition and the number of averages to be taken if the average tlpe is
chosen. The commands are:

. COUNT
o TYPE

count arg = {2l4l8l16132164112812561 An integer that specifies the number of averages to be taken of
eoch time point.

Figure 2+1. ACQuire Subsystem Syntax Diagram

HP 16528/16538
Programming Reference

ACQuire Subsystem
2+1

count-orgCOUN t

COUN t ?

AVERoqe

ACCurnu I o te

TYPE ?

ACQuire SUbsystem 24
Introduction The ACQuire subsystem commands are used to select the type of

acquisition and the number of averages to be taken if the average type is
chosen. The commands are:

• COUNt
• TYPE

COUNt? I-----------------------~

TYPE? 1--------------------------'
01t55ZS10

count_arg = {2141811613216411281256} An integer that specifies the number ofaverages to be taken of
each time point.

Figure 24-1. ACQuire Subsystem Syntax Diagram

HP 16528/16538
Programming Reference

ACQuire Subsystem
24-1

Acquisition Type
Normal

In the Normal mode, with the ACCumulate command OFF, the
oscilloscope acquires waveform data and then displays the waveform.
When the oscilloscope makes a new acquisition, the previously acquired
waveform is erased from the display and replaced by the newly acquired
wavefonn.

When the ACCumulate command is ON, the oscilloscope displays all the
wavefonn acquisitions without erasing the previously acquired waveform.

Acquisition Type
Average

ACQuire Subsystem
2+2

In the Average mode, the oscilloscope averages the data points on the
waveform with previously acquired data. Averag"g helps eliminate
random noise from the displayed wavefonn. In this mode the
ACCumulate @mmand is OFF. When Average mode is selected, the
nrrmber of averages must also be specified using the COUNT command.
Previously averaged waveform data is erased from the display and the
newly averaged waveform is displayed.

HP 16s28/16s38
Programming Relerence

Acquisition Type In the Normal mode, with the ACCumulate command OFF, the
Normal oscilloscope acquires waveform data and then displays the waveform.

When the oscilloscope makes a new acquisition, the previously acquired
waveform is erased from the display and replaced by the newly acquired
waveform.

When the ACCumulate command is ON, the oscilloscope displays all the
waveform acquisitions without erasing the previously acquired waveform.

Acquisition Type
Average

ACQuire Subsystem
24-2

In the Average mode, the oscilloscope averages the data points on the
waveform with previously acquired data. Averaging helps eliminate
random noise from the displayed waveform. In this mode the
ACCumulate command is OFF. When Average mode is selected, the
number of averages must also be specified using the COUNt command.
Previously averaged waveform data is erased from the display and the
newly averaged waveform is displayed.

HP 16528/16538
Programming Reference

ACQuire

ACQuire

HP 1652B./16s38
Programming Reference

The ACQuire selector is used as part of a compound command header to
acoess ths ssfrings found in oscilloscope's Acquire menu. It alwap
follows the SCOPe selector because it selects a branch below the SCOPe
level in the command tree.

Command Syntax: :SCoPe:ACQuire

Ercmple: oUTPUT XXX ; " : SCoPE : ACQU I RE : TYPE N0RI{AL"

selector

ACQuire Subsystem
2+3

ACQuire

Command Syntax:

Example:

HP 16528/16538
Programming Reference

ACQuire

selector

The ACQuire selector is used as part of a compound command header to
access the settings found in oscilloscope's Acquire menu. It always
follows the SCOPe selector because it selects a branch below the SCOPe
level in the command tree.

:SCOPe:ACQuire

OUTPUT XXX; ":SCOPE:ACQUIRE:TYPE NORMAL"

ACQuire Subsystem
24-3

COUNT

COUNT

ACQuire Subsystem
2+4

command/query

The COUNT co-mand specifies the number of acquisitions for the
running weighted average. This command generates an error if Normal
acqnisilisn mode is sPecified.

The query returns the last specified count.

GommandSyntax: :SGOPe:ACQuire:COUl.lt <@unt>

where

<@unt> i:= {2l4l8l 16l32lA1l 1281256}

Example oUTPUT xXX; " : scoPE : ACQUIRE : CoUNT 16"

Query Syntaxl :SCOPe:ACQuire:COUNI?

Returned Format [:SCOPe:ACOuire:COUI*,ttJ < count > < NL>

Example: 10 Drlt Acg [too]
20 OUTPUT XXX; " : SCOPE : ACQ: C0UN?"

30 ENTER XXX;Ac$

40 PRINT Ac$

50 END

HP 16528/16538
Programming Relerence

COUNt

COUNt command/query

The COUNt command specifies the number of acquisitions for the
running weighted average. This command generates an error if Normal
acquisition mode is specified.

The query returns the last specified count.

Command Syntax: :SCOPe:ACQuire:CQUNt <count>

where

<count>

Example

Query Syntax:

Returned Format

Example:

ACQuire Subsystem
24-4

:: = {2141811613216411281256}

OUTPUT XXX;":SCOPE:ACQUIRE:COUNT 16"

:SCOPe:ACQuire:CQUNt?

[:SCOPe:ACQuire:COUNt] <count> <NL>

10 DIM Ac$ [100]

20 OUTPUT XXX;":SCOPE:ACQ:COUN?"
30 ENTER XXX;Ac$
40 PRINT Ac$
50 END

HP 16528/16538
Programming Reference

TYPE

TYPE

HP 16s28/16s38
Programming Reference

command/query

The TYPE cor"mand selects the grpe of acquisition that is to take place
when the START 6smmand is executed. One of three acquisition types
may be selected: the NORMaI AVERage, or ACCumulate mode.

The query returns the last specified type.

COmmand Syntax :SCOPe:ACQuire:TYPE {NORMallAVERagelAocumulate}

Example: oUTPUT xXX; " : scoPE : AcQUIRE : TYPE NoRl'lAL"

Query Syntaxr :SCOPe:ACOuire:WPE?

{NORMal lAVERage} < NL>

Example: 10 DIt',t Atg [too]
20 OUTPUT XXX; " : SC0PE : ACQUIRE : TYPE?"

30 ENTER XXX;At$

40 PRINT At$

50 END

ACQuire Subsystem
2+5

TYPE

Command Syntax

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

TYPE

command/query

The TYPE command selects the type of acquisition that is to take place
when the STARt command is executed. One of three acquisition types
may be selected: the NORMal, AVERage, or ACCumulate mode.

The query returns the last specified type.

:SCOPe:ACQuire:TYPE {NORMal IAVERage IACCumulate}

OUTPUT XXX;":SCOPE:ACQUIRE:TYPE NORMAL"

:SCOPe:ACQuire:TYPE?

[:SCOPe:ACQuire:TYPE] {NORMal IAVERage} < NL>

10 DIM At$ [100]
20 OUTPUT XXX;":SCOPE:ACQUIRE:TYPE?"
30 ENTER XXX;At$
40 PRINT At$
50 END

ACQuire Subsystem
24-5

l"

r

I\)
c.n

TfMebase Subsystem 25
Introduction The commands of the TlMebase subsystem control the Timebffie, Trigger

Delay Time, and the Timebase Mode. If TRIGGERED mode is to be
used, ensure that the trigger specilications of the TRIGger subsystem have
been set. Refer to Figrre 25.-L for the TlMebase subsystem slmtax diagra-.

TlMebase Subsystem
2*1

delay_arg - delay time in seconds, from -2500 seconds through + 25M seconds
range_arg : a real numberfrom 5ns through 10s

Figure 25-1. TlMebase Subsystem Syntax Diagram

HP 16528/16s38
Programming Relerence

: T IMebose de I oy-or g

DELoy?

TRIGGERED

ronge_org

RANGe?

TIMebase SUbsystem 25
Introduction The commands of the TIMebase subsystem control the Timebase, Trigger

Delay Time, and the Timebase Mode. If TRIGGERED mode is to be
used, ensure that the trigger specifications of the TRIGger subsystem have
been set. Refer to Figure 25-1 for the TIMebase subsystem syntax diagram.

DELay?

MODe? ~----------------------..,

RANGe?------------------------
01652503

delay_arg = delay time in seconds, from -2500 seconds through +2500 seconds
range_&rg = a real numberfrom 5 ns through lOs

Figure 25-1. TIMebase Subsystem Syntax Diagram

HP 16528/16538
Programming Reference

TIMebase Subsystem
25-1

TlMebase

TIMebase selestor

The TlMebase selector is used as part of a compound command header to
aocess the selti"en found in oscilloscope's Tinebase menu. It always
folloun the SCOPe selector because it selects a branch below the SCOPe
level in the comnand tree.

Gommand Syntax: :SGoPe:TlMebass

Example: oUTPUT xXX; " : SC0PE : T IIUIEBASE : M0DE AUTo"

TlMebase Subsystem
2*2

HP 16529,116538
Programming Relerence

TIMebase

TIMebase

Command Syntax:

Example:

TlMebase Subsystem
25-2

selector

The TIMebase selector is used as part of a compound command header to
access the settings found in oscilloscope's Timebase menu. It always
follows the SCOPe selector because it selects a branch below the SCOPe
level in the command tree.

:SCOPe:TIMebase

OUTPUT XXX; ":SCOPE:TIMEBASE:MODE AUTO"

HP 16528/16538
Programming Reference

DELAY

DEIAY command/query

The DEI-AY command sets the time between the trigger and the center
of the screen if the trigger events count is zero. If the trigger events count
is non-r&ro, the center of the screen is the trigger events count plus the
delay time.

The query returns the current delay setting.

,d The DELAY comnand in the TlMebase subsystem has no shortform.
NOtg iA This is an intentional deviation from the normal truncation rules.

COmmand Syntax: :SCOPe:TlMebase:DELAY <delay time >

where:

< delay time > :: : delay time in seconds

Example: 0UTPUT XXX; " :SC0Pe:TIMebase:DELAY zUS"

Query Syntax: :SCOPe:TlMebase:DEI3Y?

Returned Format: [:SCOPe:TlMebase:DEI-AYJ <value> < NL>

Example: 10 DIM Dtg [too]
20 OUTPUT XXX ; " : SCOPe:Tll'lebase : DELAY?"

30 ENTER XXX; Dt$

40 PRINT Dt$

50 END

HP 16528/16538
Programming Reference

TlMebase Subsystem
2$3

DELAY

I
Note III

Command Syntax:

where:

< delay time>

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

DELAY

command/query

The DELAY command sets the time between the trigger and the center
of the screen if the trigger events count is zero. If the trigger events count
is non-zero, the center of the screen is the trigger events count plus the
delay time.

The query returns the current delay setting.

The DELAY command in the TIMebase subsystem has no shortform.
This is an intentional deviation from the normal truncation rules.

:SCOPe:TIMebase:DELAY <delay time>

:: = delay time in seconds

OUTPUT XXX;":SCOPe:TIMebase:DELAY 2US"

:SCOPe:TIMebase:DELAY?

[:SCOPe:TIMebase:DELAY] <value> < NL>

10 DIM Dt$ [100]
20 OUTPUT XXX;":SCOPe:TIMebase:DELAY?"
30 ENTER XXX;Dt$
40 PRINT Dt$
50 END

TIMebase Subsystem
25-3

MODE

MODE command/query

The MODE command sets the oscilloscope timebase to either Auto or
Triggered mode. When the AUTO mode is chosen, the oscilloscope waits
approximately one second for a trigger to occur. If a trigger is not
generated within that time, then auto trigger is executed. If a signal is not
applied to the input, a baseline is displayed. If there is a signal at the input
and the specified trigger conditions have not been met within one second,
the waveform display will not be slmchronized to a trigger.

When the TRIGGERED mode is chosen, the oscilloscope waits until a
trigger is received before data is acquired. The TRIGGERED mode
should be used when the trigger source signal is less than at a 4O Hz
repetition rate.

The Auto-Trig On field in the trigger menu is the same as the AUTO
mode over HP-IB or RS-232C. Setting the mode to TRIGGERED is the
same as the Auto-Trig Off on the front panel.

The query returns the current TlMebase mode.

,fA The TRIGGERED argument for MODE has no shortform. This is an
NOtg It intentional deviation from the normal truncation rule.

Command Syntaxr :SCOPe:TlMebase:MODE {TRIGGEREDIAUTO}

Example: ourpur)0c(":scopE:TtME:MoDEAUTo"

TlMebase Subsystem
2*4

HP 16528/16538
Programming Reference

MODE

MODE

I~I
Note"

Command Syntax:

Example:

TIMebase Subsystem
25-4

command/query

The MODE command sets the oscilloscope timebase to either Auto or
Triggered mode. When the AUTO mode is chosen, the oscilloscope waits
approximately one second for a trigger to occur. If a trigger is not
generated within that time, then auto trigger is executed. If a signal is not
applied to the input, a baseline is displayed. If there is a signal at the input
and the specified trigger conditions have not been met within one second,
the waveform display will not be synchronized to a trigger.

When the TRIGGERED mode is chosen, the oscilloscope waits until a
trigger is received before data is acquired. The TRIGGERED mode
should be used when the trigger source signal is less than at a 40 Hz
repetition rate.

The Auto-Trig On field in the trigger menu is the same as the AUTO
mode over HP-IB or RS-232C. Setting the mode to TRIGGERED is the
same as the Auto-Trig Off on the front panel.

The query returns the current TIMebase mode.

The TRIGGERED argument for MODE has no shortform. This is an
intentional deviation from the normal truncation rule.

:SCOPe:TIMebase:MODE {TRIGGERED IAUTO}

OUTPUT XXX;":SCOPE:TIME:MODE AUTO"

HP 16528/16538
Programming Reference

MODE

Query Syntax! :SCOPe:TlMebase:MODE?

Returned Format: [:SGOPe:TlMebase:MODE] {Al.rTO ITRIGGERED} < NL>

Example: 10 DIt-,r Tm$ [1oo]
20 OUTPUT XXX; " : SC0Pe:TIMEBASE :l'lODE?"

30 ENTER XXX; Tm$

40 PRINT Tm$

50 END

HP 16528/16538
Programming Reference

TlMebase Subsystem
2$5

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

:SCOPe:TIMebase:MODE?

[:SCOPe:TIMebase:MODE] {AUTO ITRIGGERED} < NL>

10 DIM Tm$ [100]
20 OUTPUT XXX;":SCOPe:TIMEBASE:MODE?"
30 ENTER XXX;Tm$
40 PRINT Tm$
50 END

MODE

TIMebase Subsystem
25-5

RANGe

RANGe

TlMebase Subsystem
2S

command/query

-iioHff "ffi ::Tr5ffi Hifl?'J#. "
in seconds' rhe

Ihe query returns the current range.

Command syntar :SGOPe:TlMebase:RANGe <rango>

where:

<rangg> :: = time in seconds

Example: 0UTPUT xxx; ": scOPE : TIfu{EBASE : RANGE zUS"

Query Syntax: :SCOPe:TlMebase:RANGe?

Retumed Format: [:SCOPe:TlMebase:MNGeJ <range> <NL>

Example: 10 DIl,r Trg [1oo]
20 0UTPUT XXX; ": SCOPE : TIMEBASE : RAI{GE?"

30 ENTER XXX; Tr$

40 PRINT Tr$

50 END

HP 1652B,/16538
Programming Reference

RANGe

RANGe command/query

The RANGE command sets the full-scale horizontal time in seconds. The
RANGE value is ten times the front panel field of sldiv.

The query returns the current range.

Command syntax: :SCOPe:TIMebase:RANGe <range>

where:

<range>

Example:

Query Syntax:

Returned Format:

Example:

TlMebase SUbsystem
25-6

:: = time in seconds

OUTPUT XXX;":SCOPE:TIMEBASE:RANGE 2US"

:SCOPe:TIMebase:RANGe?

[:SCOPe:TIMebase:RANGe] <range> <NL>

10 DIM Tr$ [100]
20 OUTPUT XXX;":SCOPE:TIMEBASE:RANGE?"
30 ENTER XXX;Tr$
40 PRINT Tr$
50 END

HP 16528/16538
Programming Reference

WAveform Subsystem 26
lntroduction

HP 16s28/16538
Programming Reference

The commands of the WAVeform subsystem are used to transfer
waveform data from the oscilloscope to a controller. The commands are:

. COUNT
o DATA
o FORMat
. POINts
. PREamble
o RECord
o SOURce
o TYPe
o VALid
I XlNCrement
o XORigin
o XREFerence
o YlNCrement
o YORigin
o YREFerence

WAVeform Subsystem
26-1

WAVeform SUbsystem 26
Introduction

HP 16528/16538
Programming Reference

The commands of the WAVeform subsystem are used to transfer
waveform data from the oscilloscope to a controller. The commands are:

• COUNt
• DATA
• FORMat
• POINts
• PREamble
• RECord
• SOURce
• TYPe
• VALid
• XINCrement
• XORigin
• XREFerence
• YINCrement
• YORigin
• YREFerence

WAVeform Subsystem
26-1

:WAVe f o rm

DATA?

FORMo t?

POINts?

PREomb I e?

RECo r d

RECord?

i chonne l-#

XINCrement?

XORIg i n?

XREFerence?

YINCrement?

YORIgin?

YREFerence?

channel_#: {112}

WAVeform Subsystem
2e.2

Figure 2&1. WAveform Subsystem Syntax Diigram

HP 1652B./16538
Programming Reference

COUNt? ~--------------------------~

DATA? t-----------------------------~

FORMa t? }----------------------------~

POINts? }----------------------------~

PREamb I e? I---------------------------~

RECor d? }----------------------------~

SOURce?I----------------------------~

TYPE? }-----------------------------~

VALId? }----------------------------~

XINCrement? ~------------------------~

XORIg j n? }---------------------------~

XREF e rence? }--------------------------~

YINCrement? }--------------------------~

YORIg i n? }-----------------------------I~

YREF e r ence? 1-----------------------------"
01652512

channel_# = {112}

Figure 26-1. WAVeform Subsystem Syntax Diagram

WAVeform Subsystem
26-2

HP 16528/16538
Programming Reference

Waveform
Record

The wavefonn record is actually contained in two portions; the waveform
data and preamble. The waveform data is the actual data acquired for
each point. The proamble contains the information for interpreting
waveform data. Data in the preamble includes number of points acquired
format of acquired data, average count and the tlpe of acquired data.
The preamble also contains the X and Y increments, origins, ild
references for the acquired data for translation to time and voltage values.

The values set in the preamble are based on the settings of the variables in
the ACQuire, WAVeform, CHANnel, and TlMebase subsystems. The
ACQuire subsystem determines the acquisition type and the average

count, the WAVeform subsystem sets the number of points and the format
mode for sendiog waveform data over the remote interface and the
CHANnel and TlMebase subsystems set all the X - Y p&rameters.

The two acquisition types that may be chosen are Normal and Average.

In the Normal mode, with ACCumulate command OFtr, the oscilloscope
acquires waveform data and then displays the wavefonn. When the
oscilloscope takes a new acquisition, the previously acquired waveform is
erased from the display and replaced by the newly acquired waveform.

When ACCumulate is set ON, the oscilloscope displays all the waveform
acquisitions without erasing the previously acquired wavefonn.

Average Mode In the Average mode, the oscilloscope averages the data points on the
waveform with previously acquired data. Averagr"g helps eliminate
random noise from the displayed waveform. In this mode ACCumulate is
set to OFF. When Average mode is selected the number of averages must

also be specified using the COUNT command. Previously displayed
waveform data is erased from the display and the newly averaged
waveform is displayed.

Data Acquisition
Types

Normal Mode

HP 16528/16s38
Programming Reference

WAVeform Subsystem
2S3

Waveform
Record

The waveform record is actually contained in two portions; the waveform
data and preamble. The waveform data is the actual data acquired for
each point. The preamble contains the information for interpreting
waveform data. Data in the preamble includes number of points acquired,
format of acquired data, average count and the type of acquired data.
The preamble also contains the X and Y increments, origins, and
references for the acquired data for translation to time and voltage values.

The values set in the preamble are based on the settings of the variables in
the ACQuire, WAVeform, CHANnel, and TIMebase subsystems. The
ACQuire subsystem determines the acquisition type and the average
count, the WAVeform subsystem sets the number of points and the format
mode for sending waveform data over the remote interface and the
CHANnel and TIMebase subsystems set all the X - Y parameters.

Average Mode

Data Acquisition The two acquisition types that may be chosen are Normal and Average.

Types

Normal Mode In the Normal mode, with ACCumulate command OFF, the oscilloscope
acquires waveform data and then displays the waveform. When the
oscilloscope takes a new acquisition, the previously acquired waveform is
erased from the display and replaced by the newly acquired waveform.

When ACCumulate is set ON, the oscilloscope displays all the waveform
acquisitions without erasing the previously acquired waveform.

In the Average mode, the oscilloscope averages the data points on the
waveform with previously acquired data. Averaging helps eliminate
random noise from the displayed waveform. In this mode ACCumulate is
set to OFF. When Average mode is selected the number of averages must
also be specified using the COUNt command. Previously displayed
waveform data is erased from the display and the newly averaged
waveform is displayed.

HP 16528/16538
Programming Reference

WAVeform SUbsystem
26-3

Format for Data
Transfer

BYTE Format

WAVeform Subsystem
264

There are three formats for trnnsferring waveform data over the remote
interface. The formats are WORD, BYTE, ild ASCII.

WORD and BYTE formatted wavefonn records are tra"smitted using the
arbitrary block program data format specified in IEEE-488.2. When you
use this format, the ASCII character strirg *#8< DDDDDDDD > n is sent
before the actual data. Each D represents an ASCII digit. The eigbt-digit
number represents the number of bytes to follow.

For example, if zKpoints of data are to be transmitted, the ASCI string
#800002W would be sent.

ln BYTE format, the six least significant bits represent the waveform data.
This me4ns that the display is divided into 64 vertical increments. The
most significant bit is not used. The second most signilicant bit is the
overflow bit. If this bit is set to nln and all data bits are set to nOn then the
waveform is clipped at the top of the screen. If all nO"s are returned, then
the waveform is clipped on the bottom of the display (see figure 26-2).

NORMAL AND AVERAGE ACOUISITION TYPE

128 64 32 16

NOT / ..
USED /

-DATA

I
OVERFLOW

Figure 2&2. Byte Data

r0530/8L20

Structure

The data returned in BYTE format are the same for either Normal or
Average acquisition t5pes. The data transfer rate in this format is faster
than the other two formats.

HP 16528/16538
Programming Reference

Format for Data
Transfer

There are three formats for transferring waveform data over the remote
interface. The formats are WORD, BYrE, and ASCII.

WORD and BYTE formatted waveform records are transmitted using the
arbitrary block program data format specified in IEEE-488.2. When you
use this format, the AScn character string "#8 < DDDDDDDD >" is sent
before the actual data. Each D represents an ASCII digit. The eight-digit
number represents the number of bytes to follow.

For example, if 2048 points of data are to be transmitted, the ASCn string
#800002048 would be sent.

BYTE Format In BYrE format, the six least significant bits represent the waveform data.
This means that the display is divided into 64 vertical increments. The
most significant bit is not used. The second most significant bit is the
overflow bit. If this bit is set to "1" and all data bits are set to "0" then the
waveform is clipped at the top of the screen. If all "O"s are returned, then
the waveform is clipped on the bottom of the display (see figure 26-2).

NORMAL AND AVERAGE ACQUISITION TYPE

128 64 32 16 8 4 2

U1530/BL20

MSB

NOT /'USED ,'----- DATA /

OVERFLOW

Figure 26-2. Byte Data Structure

WAVeform Subsystem
26-4

The data returned in BYTE format are the same for either Normal or
Average acquisition types. The data transfer rate in this format is faster
than the other two formats.

HP 1652B/16538
Programming Reference

WORD Format Word data is two bytes wide with the most significant byte of each word
being transmitted first. Each 16-bit value effectively places a data point on
screen. The screen therefore is divided into 16384 vertical increments. The
WORD data structure for normal and average acquisition tlpes are shoum

infryure%-3.

The relationship between BYTE and WORD formats 3vs simil31. lyts
data values equal word data values divided by ?56. This is the reason that
the least significant byte in the normal acquisition mode always s6a13ins

"0"s. In the average acquisition mode, the extra bits of resolution gained by
averaging occupy the least significant byte of the word. However, this is
only true when RECord type is set to WINDow.

NORMAL ACOUISITION TYPE

32760 16384 urrt orrXtSro, 1oz4 5tz zs6 rz' 64 32 ,utttu 4 2 1

AVERAGE ACOUISITION TYPE
MSB

32768 16384 8192 4096 2048 1Q24 5'12 256

L111 "g=" /

DATA (FRACT ION) -----l
163:F/81 r9

Figure 2S3. Word Data Structure

ASCII Format ASCII formatted waveform records are transmitted one value at a time,
separated by a comma. The data values transmitted are the sr-e as would
be sent in the WORD format except that they are converted to an integer
ASCII format (six or less characters) before being transmitted. The
header before the data is not included in this format.

HP 16528./16538
Programming Relerence

WAVeform Subsystem
2F5

ti
\- DATA

DATA

WORD Format Word data is two bytes wide with the most significant byte of each word
being transmitted fIrst. Each 16-bit value effectively places a data point on
screen. The screen therefore is divided into 16384 vertical increments. The
WORD data structure for normal and average acquisition types are shown
in figure 26-3.

The relationship between BYTE and WORD formats are similar. Byte
data values equal word data values divided by 256. This is the reason that
the least significant byte in the normal acquisition mode always contains
"O"s. In the average acquisition mode, the extra bits of resolution gained by
averaging occupy the least significant byte of the word. However, this is
only true when RECord type is set to WINDow.

NORMAL ACQUISITION TYPE
MSB

~
3276816384 8192 4096

1

2048

0
512

1

256

NOT ~ -'/
USED DATA

OVERFLOW

AVERAGE ACQUISITION TYPE
MSB

32768 16384 8192 4096 2048 1024 512 256

OVERFLOW

LSB

128 64 32 16 ,....--;:.-8~_,.--;;;..~_

LLL-n.-..-.-..-.-..-,"--,
,'-----ALL "05" -----/

LS8

DL-...6_4--J..-_32--l..--_16-...L..-_S--l.-_...l.---...l..._

''----DATA (FRACTION) ----'/

ASCII Format

HP 16528/16538
Programming Reference

Figure 26-3. Word Data Structure

ASCII formatted waveform records are, transmitted one value at a time,
separated by a comma. The data values transmitted are the same as would
be sent in the WORD format except that they are converted to an integer
ASCII format (six or less characters) before being transmitted. The
header before the data is not included in this format.

WAVeform Subsystem
26-5

Data Conversion

Conversion from Data
Value to Vottage

Conversion from Data
Value to Time

Conversion from Data
Value to Trigger Point

Data sent from the HP L652B153B is raw data and must be scaled for
useful interpretation. The values used to interpret the data iue the X and

Y references, X and Y origins, ild X and Y increments. These values are

read from the waveform preamble or by the queries of these values.

The formula to convert a data value returned by the instrument to a
voltage is:

voltage = [(data value yrefercnce) x yincrcmentJ * yorigin

The time value of a data point can be determined by the position of the

data point. As an example, the third data point sent with XORIGIN :
16ns, XREFERENCE - 0 and XINCREMENT : 2ns. Using the

formula:

time = [(data point number nefercnce) x xincttment] + xorigin

would result in the following calculation:

time = [(3-0) x2ns] + 16ns =22ns.

The trigger data point can be determined by calculating the closest data
point to time 0.

WAVelorm Subsystem
2&6

HP 16528./16538
Programming Reference

Conversion from Data
Value to Voltage

Data Conversion Data sent from the HP 1652B/53B is raw data and must be scaled for
useful interpretation. The values used to interpret the data are the X and
Y references, X and Y origins, and X and Y increments. These values are
read from the waveform preamble or by the queries of these values.

The formula to convert a data value returned by the instrument to a
voltage is:

voltage = [(data value - yreference) x yincrement] + yorigin

Conversion from Data
Value to Time

Conversion from Data
Value to Trigger Point

WAVeform SUbsystem
26-6

The time value of a data point can be determined by the position of the
data point. As an example, the third data point sent with XORIGIN =
16ns, XREFERENCE = 0 and XINCREMENT = 2ns. Using the
formula:

time = [(data point number - xrefereoce) x xincrement] + xorigio

would result in the following calculation:

time = [(3· 0) x 2os] + 16ns =22ns.

The trigger data point can be determined by calculating the closest data
point to time O.

HP 16528/16538
Programming Reference

WAVeform

WAVeform selector

The WAVeform selector is used as part of a compound command header
to access the settings found in oscilloscope's Waveform menu. It alwap
follows the SCOPe selector because it selects a branch below the SCOPe
level in the command tree.

Command SynUx: :SCoPe:wAVelorm

Example: oUTPUT xxx; " : scoPE : LJAVEFoRH: "

HP 16s28/16s38
Programming Relerence

WAVelorm Subsystem
2&7

WAVeform

Command Syntax:

Example:

HP 16528/16538
Programming Reference

WAVeform

selector

The WAVeform selector is used as part of a compound command header
to access the settings found in oscilloscope's Waveform menu. It always
follows the SCOPe selector because it selects a branch below the SCOPe
level in the command tree.

:SCOPe:WAVeform

OUTPUT XXX; ":SCOPE:WAVEFORM:"

WAVeform Subsystem
26-7

COUNT

COUNT

WAVelorm Subsystem
2*8

query

The COUNT query returns the AVERage count that was last specified in
the Acquire subslrtem.If the displaymode is either NORMaI or
ACCumulate, a 1 is returned. If the display mode is AVERage, the
average number is returned.

Query Syntax: :SCOPe:wAVeform:COUl.lt?

Returned Format: [:SCOPe:WAVelorm:COU].ltl <@unt> <NL>

where:

< count > :: : {21418 I 16132l04 | 1281256}

Example: to DIM Acg [1oo]
20 OUTPUT XXX; " : SCOPE : bJAVEF0RM C0UNT?"

30 ENTER XXX;Ac$

40 PR I NT Ac$

50 END

HP 1652B.116s38
Programming Reference

COUNt

COUNt query

The COUNt query returns the AVERage count that was last specified in
the Acquire subsystem. If the display mode is either NORMal or
ACCumulate, a 1 is returned. If the display mode is AVERage, the
average number is returned.

Query Syntax: :SCOPe:WAVeform:COUNt?

Returned Format: [:SCOPe:WAVeform:COUNt] < count> < NL >

where:

<count>

Example:

WAVeform Subsystem
26-8

:: = {21 4 1811613216411281256}

10 DIM Ac$ [100]
20 OUTPUT XXX;":SCOPE:WAVEFORM COUNT?"
30 ENTER XXX;Ac$
40 PRINT Ac$
50 END

HP 16528/16538
Programming Reference

DATA

DATA

Query Syntax:

Returned Format:

Example:

HP 16s28/16s38
Programming Reference

query

The DATA query returns the waveform record stored in a specified
chatt'tel buffer. The SOURce command of this subsystem has to be used
to select the specified chattttel. The data is transferred based on the
FORI\{AT (BYTE, woRD or ASCII) chosen and the RECORD
specified (FULL or WINDOW). Since WAVeform:DATA is a query
only, it can not be used to send a waveform record back to the
oscilloscope from the controller. If a waveform record is to be saved for
later reloading into the oscilloscope, the SYSTem:DATA comm6d
should be used. See the DATA instruction in the SYSTem subsvstem for
information concerning the < block data > porameter.

:SCOPe:WAVeform: [SOURce CHANnel { 1 | 2} ;JDATA?

[:SGOPe:WAVeform:DATAJ#800004096 < block data > < NL>

The following e)emple program moves data from the HP L652B153B to a
controller.

1OO CLEAR XXX

110 0UTPUT XXX;":SYSTEM:HEADER OFF"

120 OUTPUT XXX; " : SCOPE : ACQUIRE : TYPE NORMAL"

130 OUTPUT XXX ; " : SCOPE : WAVEFORM: S0URCE CHANNEL 1 "
140 0UTPUT XXX; " : SC0PE : bJAVEFORM: F0RMAT BYTE"

150 0UTPUT XXX; " : SCOPE : tlAVEFORl'l : RECORD FULL"

160 OUTPUT XXX; " : SCOPE : AUT0SCALE"

170 DIM Header$ [20]
180 Length=2048

190 ALL0CATE I NTEGER I,AVEF0RM (I : Length)

200 0UTPUT XXX; " : SC0PE :|'IAVEFORM: DATA?"

2t0 tl,lTER XXX US i NG "# , 10A" ; Header$

2?0 TNTER XXX US I NG "# , B" ;bJavef orm (*)

230 ENTER XXX USING "#,B";Lastchar
?40 END

WAVelorm Subsystem
2S9

DATA

DATA

query

The DATA query returns the waveform record stored in a specified
channel buffer. The SOURce command of this subsystem has to be used
to select the specified channel. The data is transferred based on the
FORMAT (BYTE, WORD or ASCII) chosen and the RECORD
specified (FULL or WINDOW). Since WAVeform:DATA is a query
only, it can not be used to send a waveform record back to the
oscilloscope from the controller. If a waveform record is to be saved for
later reloading into the oscilloscope, the SYSTem:DATA command
should be used. See the DATA instruction in the SYSTem subsystem for
information concerning the < block data> parameter.

Query Syntax: :SCOPe:WAVeform:[SOURce CHANnel{112};]DATA?

Returned Format: [:SCOPe:WAVeform:DATA]#800004096 <block data> <NL>

The following example program moves data from the HP 1652B/53B to a
controller.

Example:

HP 16528/16538
Programming Reference

100 CLEAR XXX
110 OUTPUT XXX;":SYSTEM:HEADER OFF"
120 OUTPUT XXX;":SCOPE:ACQUIRE:TYPE NORMAL"
130 OUTPUT XXX;":SCOPE:WAVEFORM:SOURCE CHANNELl"
140 OUTPUT XXX;":SCOPE:WAVEFORM:FORMAT BYTE"
150 OUTPUT XXX;":SCOPE:WAVEFORM:RECORD FULL"
160 OUTPUT XXX;":SCOPE:AUTOSCALE"
170 OIM Header$[20]
180 Length=2048
190 ALLOCATE INTEGER WAVEFORM(l:Length)
200 OUTPUT XXX;":SCOPE:WAVEFORM:DATA?"
210 ENTER XXX USING "#,lOA";Header$
220 ENTER XXX USING "#,B";Waveform(*)
230 ENTER XXX USING "#,B";Lastchar
240 END

WAVeform Subsystem
26-9

FORMat

FORMat

The FORMat command specifies the data transmission mode of
waveform data over the remote interface.

The query returns the currently specified format.

Command Syntax: :SCOPe;WAVeform:FORMat {BYTE I WORD I ASCii}

Example: oUTPUT XXX;":sc0PE:uAV:F0RtrtAT"

Query Syntax: :SCOPe:wAVeform:FORMar?"

Returned Format: [:SCOPe:WAVeform:FOBMat] iBYTEIWORDIASCii]<NL>

Example: to Drt'l Fo$ [too]
20 OUTPUT XXX; " : SC0P[: I'JAVEFORM: FORMAT?"

30 ENTER XXX; Fo$

4A PRINT Fo$

50 END

command/query

HP 16s28/16538
Programming Relerence

WAVelorm Subsystem
2S10

FORMat

FORMat

Command Syntax:

Example:

Query Syntax:

Returned Format:

Example:

WAVeform Subsystem
26-10

command/query

The FORMat command specifies the data transmission mode of
waveform data over the remote interface.

The query returns the currently specified format.

:SCOPe:WAVeform:FORMat {BYTEIWORDIASCii}

OUTPUT XXX;":SCOPE:WAV:FORMAT"

:SCOPe:WAVeform:FORMat?1I

[:SCOPe:WAVeform:FORMat] {BYTE IWORD IASCii} < NL>

10 DIM Fo$ [100]
20 OUTPUT XXX;":SCOPE:WAVEFORM:FORMAT?"
30 ENTER XXX;Fo$
40 PRINT Fo$
50 END

HP 16528/16538
Programming Reference

POlNts

POlNts

HP 16s28/16538
Programming Reference

query

When WAVeform RECord is set to FULL, the POINts query always
returns a value of 2O48 points. When WAVeform RECord is set to
WINDow, then the query retunrs the ntrmber of points displayed on
screen.

Query Syntax: :SGOPe:WAVeform:POltlts?

Returned Format: [:SCOPe:WAVeform:POl].ltsl < points > < NL>

where:

< points > il = ournber of points depending on setting of WAVeform RECord command

Example: 10 DIr-r Pog [1oo]
20 0UTPUT XXX ; " : SCOPE : bJAVEF0RiI : POI NTS?"

30 ENTER XXX; Po$

40 PRINT Po$

50 END

WAVeform Subsystem
2S1 1

POINts

POINts

query

When WAVeform RECord is set to FULL, the POINts query always
returns a value of 2048 points. When WAVefonn RECord is set to
WINDow, then the query returns the number of points displayed on
screen.

Query Syntax: :SCOPe:WAVeform:POiNts?

Returned Format: [:SCOPe:WAVeform:POINts] <points> <NL>

where:

<points>

Example:

HP 16528/16538
Programming Reference

:: = number of points depending on setting of WAVeform RECord command

10 DIM Po$ [100]
20 OUTPUT XXX;":SCOPE:WAVEFORM:POINTS?"
30 ENTER XXX;Po$
40 PRINT Po$
50 END

WAVeform Subsystem
26-11

PREAmbIe

PREAmble

Query Syntax! :SCOPe:WAVeform:[SOURca CHANnel{l l2hJPREAmble?

Returned Format: [:SCOPe:WAVeform:PREAmbleJ

< format > ,

<tyPe >
'

< points > ,

< count > ,

< Xncrement > ,

< Xorigio) ,

<)feferenc€ > ,

< Yincrement > ,

< Yorigih) ,

<Yreferenoe> <NL>

Example: 10 DrM Prg[3oo]

20 0UTPUT XXX; " : SCOPE:UAVEFORM: PREAMBLE?"

30 ENTER XXX; Pr$

40 PRINT Pr$

50 TND

WAVeform Subsystem
26-12

'$i
Note

query

The PREAmble query returns the preamble of the specified cha"ttel. The
channel is specified using the SOURce command.

The short form for PREAIvIBLE is PREAmble. This is an intentional
deviation from the normal truncation rule.

HP 16528116538
Programming Reference

PREAmble

PREAmble

Query Syntax:

Returned Format:

Example:

WAVeform Subsystem
26-12

query

The PREAmble query returns the preamble of the specified channel. The
channel is specified using the SOURce command.

The short form for PREAMBLE is PREAmble. This is an intentional
deviation from the normal truncation rule.

:SCOPe:WAVeform:[SOURce CHANnel{112};]PREAmble?

[:SCOPe:WAVeform:PREAmble]

<format>,

<type> ,

<points>,

<count> ,

< ><increment> ,

<Xorigin>,

< Xreference > ,

< Yincrement > ,

<Yorigin >,

< Yreference > < NL>

10 DIM Pr$ [300]
20 OUTPUT XXX;":SCOPE:WAVEFORM:PREAMBLE?"
30 ENTER XXX;Pr$
40 PRINT Pr$
50 END

HP 16528/16538
Programming Reference

RECord

RECord command/query

Ihe RECord command specifies the data you want to receive over the
bus. The choices are FULL or WINDOW. When FULL is chosen the
entire 2048 point record of the specified channel is transmitted over the
bus. In WINDOW mode, only the data displayed on screen will be
returned. Use the SOURce command to select the channel of interest.
Ihe query returns the present mode chosen.

COmmand Syntax: :SCOPe:WAVelorm:RECord {FULLIWNDow}

Example: oUTPUT xXX; " : scoPE :IJAV: souR cHANi :REC FULL"

Query Syntaxl :SCOPe:WAVetorm:RECord?

Returned Format: [:SCOPe:WAVeform:RECord] {FULLlWtNDow} < NL>

Example: 10 DIr.t t.lrg [1oo]
20 OUTPUT XXX ; " : SCOPE :WAVEF0RM: SOURCE CHANNELl :REC0RD?"

30 ENTTR XXX;l,Jr$

40 PR I NT [.lr$

50 END

HP 16528./16538
Programming Heference

WAVeform Subsystem
2&13

RECord

Command Syntax:

Example:

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

RECord

command/query

The RECord command specifies the data you want to receive over the
bus. The choices are FULL or WINDOW. When FULL is chosen the
entire 2048 point record of the specified channel is transmitted over the
bus. In WINDOW mode, only the data displayed on screen will be
returned. Use the SOURce command to select the channel of interest.
The query returns the present mode chosen.

:SCOPe:WAVeform:RECord {FULL IWINDow}

OUTPUT XXX;":SCOPE:WAV:SOUR CHANl:REC FULL"

:SCOPe:WAVeform:RECord?

[:SCOPe:WAVeform:RECord] {FULL IWINDow} < NL>

10 DIM Wr$ [100]
20 OUTPUT XXX;":SCOPE:WAVEFORM:SOURCE CHANNEL1:RECORD?"
30 ENTER XXX;Wr$
40 PRINT Wr$
50 END

WAVeform Subsystem
26-13

SOURce

SOURce command/euery

The SOURce command specifies the channel that is to be used for all
subsequent waveform commands.

The query returns the presently selected chanael.

Command Syntax :SCOPe:wAVstorm:SOURca CMNnel{1 12}

Example: oUTPUT XXX;":SC0PE:lJAVEFoRll:SoURCE CHAIINELI"

Query Syntax: :SCOPe:wAVeform:SOURce?

Returned Format: [:SCOPe:WAVeform:SOURce] CF|ANndcN> <NL>

Example: 10 DIU [Jsg [1oo]
20 0UTPUT XXX; " : SC0PE : I'JAVEFORM: SOURCE?"

30 ENTER XXX;Us$

40 PRINT Us$

50 END

WAVeform Subsystem
26-14

HP 16s2B,/16538
Programming Reference

SOURce

SOURce

Command Syntax:

Example:

Query Syntax:

Returned Format:

Example:

WAVeform Subsystem
26-14

command/query

The SOURce command specifies the channel that is to be used for all
subsequent waveform commands.

The query returns the presently selected channel.

:SCOPe:WAVeform:SOURce CHANnel{112}

OUTPUT XXX;":SCOPE:WAVEFORM:SOURCE CHANNELl"

:SCOPe:WAVeform:SOURce?

[:SCOPe:WAVeform:SOURce] CHANnel<N> <NL>

10 DIM Ws$ [100]
20 OUTPUT XXX;":SCOPE:WAVEFORM:SOURCE?"
30 ENTER XXX;Ws$
40 PRINT Ws$
50 END

HP 16528/16538
Programming Reference

TYPE

TYPE query

The TYPE quory returns the present acquisition tlpe which was specified
in the ACQuire subsystem.

Query Syntar: :SCoPe:wAVeform:WPE?

Retumed Fonnat: [:SCOPe:WAVeform:WP!]{NORmal I A\ERage I Acoumulate} < NL >

Example: 10 DIf{ r,,tg [1oo]
20 0UTPUT XXX; " : SCOPE : bJAVEF0RI'|: TYPE?"

30 ENTER XXX;l'lt$

40 PR I NT I't$
50 EilD

HP 16528/16538
Programming Relerence

WAVeIorm Subsystem
2F15

TYPE

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

TYPE

query

The TYPE query returns the present acquisition type which was specified
in the ACQuire subsystem.

:SCOPe:WAVeform:TYPE?

[:SCOPe:WAVeform:TYPE]{NORmal IAVERage IACCumulate} < NL>

10 DIM Wt$ [100J
20 OUTPUT XXX;":SCOPE:WAVEFORM:TYPE?"
30 ENTER XXX;Wt$
40 PRINT Wt$
50 END

WAVeform Subsystem
26-15

VALid

VALid query

The VALid query checks the oscilloscope for acquired data. If a
measurement is completed, and data has been acquired by all channels,
then the query reports a 1. A 0 is reported 11 1e dalx has been acquired for
the last acquisition.

QuerySyntax: :SCOPe:wAVeform:VALid?

Returned Format: [:SCOPe:WAVeform:VALid] {0 | 1} < NLt

where:

0 :: = No data acquired

1 :: = Data has been acquired

Example: to DrM Dag [1oo]
20 0UTPUT XXX; " : SC0PE :UAVEFORM: VALID?"

30 ENTER XXX;Da$

40 PR I NT Da$

50 END

WAVeform Subsystem
2F16

HP 16s28/16538
Programming Relerence

VALid

VALid query

The VALid query checks the oscilloscope for acquired data. If a
measurement is completed, and data has been acquired by all channels,
then the query reports a 1. A 0 is reported if no data has been acquired for
the last acquisition.

Query Syntax: :SCOPe:WAVeform:VAUd?

Returned Format: [:SCOPe:WAVeform:VAUd] {OI1}<NL>

where:

o
1

Example:

WAVeform Subsystem
26-16

:: = No data acquired

:: = Data has been acquired

10 DIM Da$ [100J
20 OUTPUT XXX;":SCOPE:WAVEFORM:VALID?"
30 ENTER XXX;Da$
40 PRINT Da$
50 END

HP 16528/16538
Programming Reference

XlNCrement

XlNCrement

HP 16528/16538
Programming Reference

The XlNCrement query returns the X-increment currently in tie
preamble. This value is the time between the consecutive data points.

Query Syntax: :SCOPe:wAVeform:XlNCrement?

Returned Format: [:SCOPe:WAVeform:XlNCrement] < value > < NL>

where:

<value > :: = X-increment value currently in preamble

Example: to DIl,l xi$[1oo]
?0 OUTPUT XXX ; " : SC0PE :WAVEF0RM :XINCREI'IINT?"

30 ENTER XXX ;X'i$

40 PRINT Xi$

50 END

query

WAVelorm Subsystem
2*17

XINCrement

XINCrement

query

The XINCrement query returns the X-increment currently in the
preamble. This value is the time between the consecutive data points.

Query Syntax: :SCOPe:WAVeform:XINCrement?

Returned Format: [:SCOPe:WAVeform:XINCrement] < value> < NL >

where:

<value>

Example:

HP 16528/16538
Programming Reference

:: = X-increment value currently in preamble

10 DIM Xi$[100]
20 OUTPUT XXX;":SCOPE:WAVEFORM:XINCREMENT?"
30 ENTER XXX;Xi$
40 PRINT Xi$
50 END

WAVeform SUbsystem
26-17

XORigin

XORigin

WAVelorm Subsystem
2F18

The XORigin query returns the X-origln value currently in the preamble.
The value represents the time of the first data point in memory with
respect to the trigger point.

Query Syntax: :SCoPe:wAVelorm:XoRigin?

Returned Format: [:SCOPe:WAVelorm:XORigin] <value > < NL >

where:

<value > ::= X-origin value currently in preamble

Example: to DrM xog [too]
20 0UTPUT XXX ; " : SCOPE :I'IAVEF0RM:XORigin?"

30 ENTER XXX;Xo$

40 PRINT Xo$

50 TND

query

HP 16528/16538
Programming Relerence

XORigin

XORigin query

The XORigin query returns the X-origin value currently in the preamble.
The value represents the time of the fIrst data point in memory with
respect to the trigger point.

Query Syntax: :SCOPe:WAVeform:XORigin?

Returned Format: [:SCOPe:WAVeform:XORigin] <value> < NL>

where:

<value>

Example:

WAVeform Subsystem
26-18

:: = X-origin value currently in preamble

10 DIM Xo$ [100J
20 OUTPUT XXX;":SCOPE:WAVEFORM:XORigin?"
30 ENTER XXX;Xo$
40 PRINT Xo$
50 END

HP 16528/16538
Programming Reference

XREFerence

XREFerence

HP 16s28/16538
Programming Reference

query

The XREFerence query returns the X-reference value in the preamble.
The value specifies the first data point in memory and is always 0.

Query Syntax: :SGOPe:WAVeform:XREFerence?

Returned Format: [:SCOPe:WAVelorm:XREFerence]<value> <NL>

where:

<value > :: = X-reference value in preamble

Example: 10 DrM xo$ [1oo]
20 OUTPUT XXX; " : SCOPE : bJAVEFORM : XREFerence?"

30 ENTTR XXX;Xo$

40 PRINT Xo$

50 END

WAVeform Subsystem
2F19

XREFerence

XREFerence

query

The XREFerence query returns the X-reference value in the preamble.
The value specifies the frrst data point in memory and is always o.

Query Syntax: :SCOPe:WAVeform:XREFerence?

Returned Format: [:SCOPe:WAVeform:XREFerence] <value> < NL>

where:

<value>

Example:

HP 16528/16538
Programming Reference

:: = X-reference value in preamble

10 DIM Xo$ [100J
20 OUTPUT XXX;":SCOPE:WAVEFORM:XREFerence?"
30 ENTER XXX;Xo$
40 PRINT Xo$
50 END

WAVeform Subsystem
26-19

YlNCrement

YlNGrement

WAVeform Subsystem
2&20

query

The YlNCrement query returns the Y-increment currently in the
preamble. This value is the voltage difference between consecutive data
values.

Query Syntax: :SCOP€:WAVeform:YlNorement?

Returned Format: [:SCOPe:WAVeform:YlNCrement]<value> <NL>

where:

<value > :: = Y-increment value currently in preamble

Example: 10 DrM Y i$ [1oo]
20 0UTPUT XXX ; " : SCOPE :|'IAVEFORM: YINCREMENT?"

30 ENTER XXX; Y i $

40 PRINT Yi$

50 END

HP 16528/16538
Programming Reference

YINCrement

YINCrement query

The YINCrement query returns the Y-increment currently in the
preamble. This value is the voltage difference between consecutive data
values.

Query Syntax: :SCOPe:WAVeform:YINCrement?

Returned Format: [:SCOPe:WAVeform:YINCrement] <value> < NL>

where:

<value>

Example:

WAVeform Subsystem
26-20

:: = V-increment value currently in preamble

10 DIM Yi$[lOO]
20 OUTPUT XXX;":SCOPE:WAVEFORM:YINCREMENT?"
30 ENTER XXX;Yi$
40 PRINT Yi$
50 END

HP 16528/16538
Programming Reference

YORigin

YORigin

HP 16s28/16s38
Progra mrning Reference

The YORign query returns the Y-origin value currently in the preamble.
This value is the voltage at the center of the screen.

QuerySyntax: :SCOPe:WAVeform:YORigin?

Returned Format: [:SCOPe:WAVelorm:YORigin]<value> <NL>

where:

< value > :: : Y-origin value currently in preamble

Example: 10 Drtl Yog [1oo]
20 0UTPUT XXX; " : SCOPE :}JAVEF0RM : YORigin?"

30 ENTER XXX; Yo$

40 PRINT Yo$

50 END

query

WAVeform Subsystem
2*21

YORigin

YORigin

query

The YORigin query returns the V-origin value currently in the preamble.
This value is the voltage at the center of the screen.

Query Syntax: :SCOPe:WAVeform:YORigin?

Returned Format: [:SCOPe:WAVeform:YORigin] <value> < NL>

where:

<value>

Example:

HP 16528/16538
Programming Reference

:: = Y-origin value currently in preamble

10 DIM Yo$ [100]
20 OUTPUT XXX;":SCOPE:WAVEFORM:YORigin?"
30 ENTER XXX;Yo$
40 PRINT Yo$
50 END

WAVeform Subsystem
26-21

YREFerence

YREFerence

WAVeform Subsystem
2F22

query

The YREFerence query returns the Y-reference value in the preamble.
The value specifies the data value at center screen where Y-origin occurs.

Query Syntax: :SCOPe:WAVeform:YREFerence?

Returned FOrmat: [:SCOPe:WAVeform:YREFerence]<value> <NL>

where:

<value > :: = Y-reference value in preamble

Example: 10 DrM Yog [too]
20 OUTPUT XXX; " : SC0PE :bJAVEFORM: YREFerence?"

30 ENTER XXX; Yo$

40 PRINT Yo$

50 END

HP 16528.116538
Programming Reference

YREFerence

YREFerence query

The YREFerence query returns the V-reference value in the preamble.
The value specifies the data value at center screen where Y-origin occurs.

Query Syntax: :SCOPe:WAVeform:YREFerence?

Returned Format: [:SCOPe:WAVeform:YREFerence] <value > <NL>

where:

<value>

Example:

WAVeform Subsystem
26-22

:: = V-reference value in preamble

10 DIM Yo$ [100]
20 OUTPUT XXX;":SCOPE:WAVEFORM:YREFerence?"
30 ENTER XXX;Yo$
40 PRINT Yo$
50 END

HP 16528/16538
Programming Reference

I

N

I

s:
m
:t­en
c.,
CD
en
c
C"

'"'<!l-
CD
3

MEASure Subsystem 27
Introduction

HP 16528/16538
Programming Reference

The instructions in the MEASure subsystem are used to make automatic
piuametric measurements on displayed waveforms. The instructions :ue:

o ALL
o FALLTime
o FREQuency
o NWIDth
o OVERShoot
o PERiod
o PRESHoot
o PWIDth
o RISETime
o SOURce
o VAMPlitude
. VBASe
o VIVIAX
o Vl\dIN
o \IPP
o VTOP

Before using any of the MEASure subsystem queries, be sure that you
have used to SOURce command to specify which channel is to be used.
All subsequent measurements will be made from that channel's waveform.

If a waveform characteristic cannot be measure4 the instrument responds
with 9.9E +37.

MEASure Subsystern
27-1

MEASure SUbsystem 27
Introduction

HP 16528/16538
Programming Reference

The instructions in the MEASure subsystem are used to make automatic
parametric measurements on displayed waveforms. The instructions are:

• ALL

• FALLTime

• FREQuency

• NWIDth

• OVERShoot

• PERiod

• PRESHoot

• PWIDth

• RISETime

• SOURce

• VAMPlitude

• VBASe

• VMAX

• VMIN

• VPP

• VTOP

Before using any of the MEASure subsystem queries, be sure that you
have used to SOURce command to specify which channel is to be used.
All subsequent measurements will be made from that channel's waveform.

If a waveform characteristic cannot be measured, the instrument responds
with 9.9E +37.

MEASure Subsystem
27-1

Frequency

Period

Peak-to-Peak

Positive Pulse Width

Negative Pulse Width

Risetime

Falltime

Preshoot and
Overshoot

Preshoot

Overshoot

MEASure Subsystem
27-2

The following characteristics can be measured:

The frequency of the first complete cycle displayed is measured using the
50Vo level.

The period of the fust displayed waveform is measured at the 50Vo level.

The absoluls minimum and the ma,ximum voltages for the selected source
are measured.

Pulse width is measured at the 50Vo level of the first displayed pulse.

Pulse width is measured at the SAVo level of the first displayed pulse.

The risetime of the first displayed rising edge is measured. To obtain the
best possible measurement accuracy, select the fastest sweep speed while
keeping the rising edge on the display. The risetime is determined by
measuriog ti-e at the L}Vo and the%)Vo voltage points of the rising edge.

Falltime is measured between the L0% and the X)Vo points of the first
displayed falling edge. To obtain the best possible measurement accuracy,
select the fastest sweep speed possible while keeping the fa[ing edge on
the display.

Preshoot and overshoot measure the perturbation on a waveform above or
below the top and base voltages.

is a perturbation before a rising or a fa[ing edge and measured as a

percentage of the top-base voltage.

is a perturbation after a rising or falling edge and is measured as a

percentage of the top-base voltage.

For complete details of the mqmurement algorittms; refer to the
Front-panel Operating Reference Manuol.

Refer to figur e 27-L for the MEASure subsystem syntat diagram.

HP 16528/16s38
Programming Reference

Frequency

Period

Peak-to-Peak

Positive Pulse Width

Negative Pulse Width

Risetime

Falltime

Preshoot and
Overshoot

Preshoot

Overshoot

MEASure Subsystem
27-2

The following characteristics can be measured:

The frequency of the frrst complete cycle displayed is measured using the
50% level.

The period of the frrst displayed waveform is measured at the 50% level.

The absolute minimum and the maximum voltages for the selected source
are measured.

Pulse width is measured at the 50% level of the fIrst displayed pulse.

Pulse width is measured at the 50% level of the fIrst displayed pulse.

The risetime of the frrst displayed rising edge is measured. To obtain the
best possible measurement accuracy, select the fastest sweep speed while
keeping the rising edge on the display. The risetime is determined by
measuring time at the 10% and the 90% voltage points of the rising edge.

Falltime is measured between the 10% and the 90% points of the fIrst
displayed falling edge. To obtain the best possible measurement accuracy,
select the fastest sweep speed possible while keeping the falling edge on
the display.

Preshoot and overshoot measure the perturbation on a waveform above or
below the top and.base voltages.

is a perturbation before a rising or a falling edge and measured as a
percentage of the top-base voltage.

is a perturbation after a rising or falling edge and is measured as a
percentage of the top-base voltage.

For complete details of the measurement algorithms, refer to the
Front-panel Operating Reference Manual.

Refer to figure 27-1 for the MEASure subsystem syntax diagram.

HP 16528/16538
Programming Reference

: MEASu r e

FALLT ime?

FREQu ency?

NWIDth?

OVERSh oo t ?

PERiod?

PRESHoo t ?

PWIDth?

RISET irne?

SOUR c e chonne l-#

SOURc e ?

VAMP I i tude?

VTOP?

channel_# : an integer {1 | 21.

HP 16528/16538
Programming Reference

Figure 27-1. MEASure Subsystem Syntax Diagram

MEASure Subsystem
27-3

FALL Time? I---------------------------~

FREQuency? I-------------------------------.,~

NWIDth? I----------------------------~

OVERShoo t? 1-------------------------------.,..,

PER i od? I----------------------------~

PRESHoot? I----------------------------~

PWIDth? I----------------------------~

RI SET i me? I---------------------------~

SOURce? 1-----------------------------..;

VAMP I i tude? I---------------------------~

VBASe? I----------------------------~

VMAX? I------------------------------~

VMIN? 1-----------------------------.-,

VPP? I------------------------------~

I ~----------------------------,~ 16530502

channel_# = an integer {l I 2}.

Figure 27-1. MEASure Subsystem Syntax Diagram

HP 16528/16538
Programming Reference

MEASure Subsystem
27-3

MEASure

MEASure selector

The MEASure selector is used as part of a compound command header
to access 1trs seltings found in oscilloscope's Measure menu. It always
follows the SCOPg selector because it selects a branch below the SCOPe
level in the command tree.

CommandSyntax: :SCoPe:MEASure

Example: oUTPUT XXX; ": SCoPE: MEASURE: S0URCE CHANz"

I
tllii All queries in this subsystem return the measurement results of the last

NOte f channelspecifiedbythesOURcecommand.Ifyouwantmeasurement
results from the other channel, you must use the SOURce command
before using any of the queries.

MEASure Subsystem
27-4

HP 16528/16538
Programming Reference

MEASure

MEASure

Command Syntax:

Example:

I
Note"

MEASure Subsystem
27-4

selector

The MEASure selector is used as part of a compound command header
to access the settings found in oscilloscope's Measure menu. It always
follows the SCOPe selector because it selects a branch below the SCOPe
level in the command tree.

:SCOPe:MEASure

OUTPUT XXX; ":SCOPE:MEASURE:SOURCE CHAN2"

All queries in this subsystem return the measurement results of the last
channel specified by the SOURce command. If you want measurement
results from the other channel, you must use the SOURce command
before using any of the queries.

HP 16528/16538
Programming Reference

ALL

ALL

HP 16528/16s38
Programming Reference

query

The ALL query makes a set of measurements on the displayed waveform
using the selected souroe.

Query Syntax: :SCOPe:MEASure:[SOURce CFlANnel{ 1 | 2h]ALL?

Returned Format: [:SCOPe:MEASure:ALLPERiod] <real number>;

[RlSETime] <real number>;

[FALLTime] < real number > ;

[FREQuency] <real number>;

[PWlDtH] <real number>;

[NWlDtHl <real number>;

[VPP] <real number>;

[VAMPlitude] < real number > ;

[PRESHoot] <real number>;

[OVERShoot] <real number> <NL>

Example: 10 D I t',t Query$ [300]
20 IPRINTER IS 7OL ITHIS LINE SENDS RESULTS TO PRINTER

30 0UTPUT XXX; " : SC0Pt : MEASURE : S0UR CHAN1"

40 OUTPUT XXX; " : SC0P[: MEASURE : ALL?"

50 ENTER XXX; Query$

60 Queryg=Query$ IPOS(Queryg, " ; ")*1]
70 L00P

80 I=P0S(Query$,";")
90 EXIT IF NOT I

100 PRINT Query$ [1, I-1]
1 10 Query$=Query$ [l+1]
T2O END LOOP

130 PRINT Query$

140 PRINTER IS 1

150 tND

MEASure Subsystem
27-5

ALL

Query Syntax:

Returned Format:

Example:

HP 16528/16538
Programming Reference

ALL

query

The ALL query makes a set of measurements on the displayed waveform
using the selected source.

:SCOPe:MEASure:[SOURce CHANnel{112};]ALL?

[:SCOPe:MEASure:ALL PERiod] < real number>;

[RISETime] < real number> ;

[FALLTime] < real number> ;

[FREQuency] < real number> ;

[PWIDtH] < real number> ;

[NWIDtH] < real number> ;

[VPP] < real number> ;

[VAMPlitude] <real number>;

[PRESHoot] < real number> ;

[OVERShoot] < real number> < NL >

10 DIM Query$[300]
20 !PRINTER IS 701 !THIS LINE SENDS RESULTS TO PRINTER
30 OUTPUT XXX;":SCOPE:MEASURE:SOUR CHANl"
40 OUTPUT XXX;":SCOPE:MEASURE:ALL?"
50 ENTER XXX;Query$
60 Query$=Query$[POS(Query$,";")+l]
70 LOOP
80 I=POS(Query$,";")
90 EXIT IF NOT I
100 PRINT Query$[I,I-1]
110 Query$=Query$[I+l]
120 END LOOP
130 PRINT Query$
140 PRINTER IS 1

150 END

MEASure Subsystem
27-5

FALLT|me

FALLTime query

The FALLTime query makes a fall time measurement on the selected
channel. The measurement is made benveen the X)Vo to the L0% voltage
point of the first faling edge displayed on screen.

,d The short form of FALLTIME is FALLTime. This is an intentional
NOtg t deviationofthenormaltruncationrule.

Query Syntax! :SCOPe:MEASure:[SOURce CHANnel{1 l2};JFALLTime?

Returned Forffiat: [:SCOPe:MEASure:FALLTime] <value > < NL>

where:

<value> ::= time in seconds between 10",6 and 90% voltage points

Example: to DrM Ft$ [too]
20 0UTPUT XXX; " : SC0PE :i'IEASURE : SOURCE CHANNEL2 ; FALLTIME?"

30 ENTER XXX;Ft$

40 PRINT Ft$

50 END

MEASure Subsystem
27-6

HP 16528/16s38
Programming Reference

FALLTime

FALLTime

I
Note III

Query Syntax:

Returned Format:

where:

<value>

Example:

MEASure SUbsystem
27-6

query

The FALLTime query makes a fall time measurement on the selected
channel. The measurement is made between the 90% to the 10% voltage
point of the frrst falling edge displayed on screen.

The short form of FALLTIME is FALLTime. This is an intentional
deviation of the normal truncation rille.

:SCOPe:MEASure:[SOURce CHANnel{112};]FALLTime?

[:SCOPe:MEASure:FALLTime] <value> <NL>

:: = time in seconds between 10% and 90% voltage points

10 DIM Ft$ [100]
20 OUTPUT XXX;":SCOPE:MEASURE:SOURCE CHANNEL2;FALLTIME?"
30 ENTER XXX;Ft$
40 PRINT Ft$
50 END

HP 16528/16538
Programming Reference

FREQuency

FREQuency

HP 16528/16538
Programming Relerence

The FREQency query makes a frequency measurement on the selected
channel. The measurement is made using the first complete displayed
cycle at the 5OVo voltage level.

Query Syntax: :SCOPe:MEASure: [SOURce CHANnel{ 1 | 2};]FREQuency?

Returned Format: [:MEAsure:FREQuencyl <value> <NL>

where:

<value > :: = frequency in HerE

Example: 10 DIlt Frcy$[100]

20 0UTPUT XXX; " : SCOPE : MEASURE : S0UR CHANl ; FREQ?"

30 ENTER XXX; FTcy$

40 PRINT Frcy$

50 END

query

MEASure Subsystem
27-7

FREQuency

FREQuency

query

The FREQency query makes a frequency measurement on the selected
channel. The measurement is made using the frrst complete displayed
cycle at the 50% voltage level.

Query Syntax: :SCOPe:MEASure:[SOURce CHANnel{112};]FREQuency?

Returned Format: [:MEAsure:FREQuency] <value> <NL>

where:

<value>

Example:

HP 16528/16538
Programming Reference

:: = frequency in Hertz

10 DIM Frcy$[100]
20 OUTPUT XXX;":SCOPE:MEASURE:SOUR CHANl;FREQ?"
30 ENTER XXX;Frcy$
40 PRINT Frcy$
50 END

MEASure Subsystem
27-7

NWlDth

NWtDth

MEASure Subsystem
27-8

query

The NWIDth query makes a negative width time measurement on the
selected channel. The measurement is made betweenthe 50Vo points of
the first falling and the next rising edge displayed on screen.

Query Syntax: :SCOPe:MEASure: [SOURce CHANnel{1 l2hlNWDth?

Returned Format: [:SCOPe:MEASure:NWlDth] <value> <NL>

where:

<value > :: = negative pulse width in seconds

Example: 10 DIll Nwg [1oo]
20 0UTPUT XXX; " : SC0PE : MEASURE : SOURCE CHAN2 ; NIJI D?"

30 ENTER XXX;Nw$

40 PRINT Nw$

50 END

HP 16s2Bl16538
Programming Reference

NWIDth

NWIDth query

The NWIDth query makes a negative width time measurement on the
selected channel. The measurement is made between the 50% points of
the frrst falling and the next rising edge displayed on screen.

Query Syntax: :SCOPe:MEASure:[SOURce CHANnel{112};]NWIDth?

Returned Format: [:SCOPe:MEASure:NWIDth] <value> <NL>

where:

<value>

Example:

MEASure SUbsystem
27-8

:: = negative pulse width in seconds

10 DIM Nw$ [100J
20 OUTPUT XXX;":SCOPE:MEASURE:SOURCE CHAN2;NWID?"
30 ENTER XXX;Nw$
40 PRINT Nw$
50 END

HP 16528/16538
Programming Reference

OVERShoot

OVERshoot query

The OVERShoot query makes an overshoot measurement on the selected
channel. The measurement is made by fiodiog a distortion following the
first major transition. The result is the ratio of VMAX or MvIIN vs.

VAMPlitude.

The short form of OVERSHOOT is OVERShoot. This is an intentional
deviation from the normal truncation rule.Note |!$

Query Syntaxt :SCOPe:MEASure:[SOUFtce CHANnel{1 l2};]OVERShoot?

Returned Format: [:SCOPe:MEASure:OVERShoot] <value > < NL>

where:

<value > :: = rdtio of overshoot to Vamplitude

Example: 1o DIM ovs$[1oo]

?0 OUTPUT XXX; ": SCOPE: MEASURI S0URCE CHANI ;OVER?"

30 ENTER XXX;0vs$

40 PRINT Ovs$

50 END

HP 16528/16538
Programming Reference

MEASure Subsystem
27-g

OVERShoot

I
Note"

Query Syntax:

Returned Format:

where:

<value>

Example:

HP 16528/16538
Programming Reference

OVERShoot

query

The OVERShoot query makes an overshoot measurement on the selected
channel. The measurement is made by fmding a distortion following the
first major transition. The result is the ratio of VMAX or VMIN vs.
VAMPlitude.

The short form of OVERSHOOT is OVERShoot. This is an intentional
deviation from the normal truncation rule.

:SCOPe:MEASure:[SOURce CHANnel{112};]OVERShoot?

[: SCOPe: MEASure:OVERShoot] <value> < NL>

:: = ratio of overshoot to Vamplitude

10 DIM Ovs$ [100J
20 OUTPUT XXX;":SCOPE:MEASURE SOURCE CHANl;OVER?"
30 ENTER XXX;Ovs$
40 PRINT Ovs$
50 END

MEASure Subsystem
27-9

PERiod

PERiod

MEASure Subsystem
27-10

query

The PERiod query makes a period measluement on the selected channel.
The measurement equivalent to the inverse of frequency.

Query Syntax: :SCOPe:MEASure:[SOURce CHANnel{1 l2};]PERiod?

Returned Format: [:SCOPe:MEASure:PERiod] <value> <NL>

where:

<value > :: = waveform period in seconds

Example: to DrM Pd$ [1oo]
?0 0UTPUT XXX; " : SC0PE :MEASURE : S0URCt CHANNELl ;PERI0D?"

30 ENTER XXX;Pd$

40 PRINT Pd$

50 END

HP 16528/16538
Programming Reference

PERiod

PERiod query

The PERiod query makes a period measurement on the selected channel.
The measurement equivalent to the inverse of frequency.

Query Syntax: :SCOPe:MEASure:[SOURce CHANnel{112};]PERiod?

Returned Format: [:SCOPe:MEASure:PERiod] <value> < NL>

where:

<value>

Example:

MEASure Subsystem
27-10

:: = waveform period in seconds

10 DIM Pd$ [100J
20 OUTPUT XXX;":SCOPE:MEASURE:SOURCE CHANNEL1;PERIOD?"
30 ENTER XXX;Pd$
40 PRINT Pd$
50 END

HP 16528/16538
Programming Reference

PRESHoot

PRESHoot query

The PRESI{oot query makes the preshoot measurement on the selected
chanttel. The measurement is made by fiodiog a distortion which precedes
the first major transition on screen. The result is the ratio of VMAX or
VIWIN vs. VAMPlitude.

,fel The short form of PRESHOOT is PRESHoot. This is an intentional
NOtg il deviationofthenormaltruncationrule.

Query Syntaxl :SCOPe:MEASure:[SOURce CHANnel{1 l2};JPRESHoot?

Returned Forffiat: [:SCOPe:MEASure:PRESHoot] <value > < NL>

where:

< value > :: : ratio of preshoot to Vamplitude

Example: 1o Drlt Prs$ [1oo]
20 OUTPUT XXX; " : SCOPE :MEASURT :CHANNELZ;PRESH?"

30 ENTER XXX; Prs$

40 PRINT Prs$

50 END

HP 16528/16538
Programming Reference

MEASure Subsystem
27-11

PRESHoot

I
Note fiji

Query Syntax:

Returned Format:

where:

<value>

Example:

HP 16528/16538
Programming Reference

PRESHoot

query

The PRESHoot query makes the preshoot measurement on the selected
channel. The measurement is made by fmding a distortion which precedes
the first major transition on screen. The result is the ratio of VMAX or
VMIN vs. VAMPlitude.

The short form of PRESHOOT is PRESHoot. This is an intentional
deviation of the normal truncation rule.

:SCOPe:MEASure:[SOURce CHANnel{112};]PRESHoot?

[:SCOPe:MEASure:PRESHoot] <value> < NL>

:: = ratio of preshoot to Vamplitude

10 DIM Prs$ [lOOJ
20 OUTPUT XXX;":SCOPE:MEASURE:CHANNEL2;PRESH?"
30 ENTER XXX;Prs$
40 PRINT Prs$
50 END

MEASure Subsystem
27-11

PWlDth

PWlDth

MEASure Subsystem
27-12

The PWIDth query makes a positive pulse width measurement on the
selected channsl. The measurement is made by fioding the time difference
between the 50Vo points of the first rising and the next falling edge
displayed on screen.

Query Syntax: :SCOP9:MEASure: [SOUFce Cl-lANnel{ 1 I 2i;]nMDth?

Returned Format: [:SCOPe:MEASure:PWDth] <value> <NL>

where:

<value > :: - positive pulse width in seconds

Example: 10 DIM Pwg [1oo]
20 0UTPUT XXX ; " : SCOPI : MEASURE : S0URCE CHANNEL 2:PVIDTH?"

30 TNTER XXX; Pw$

40 PRINT Pw$

50 END

guery

HP 1652B.,/16s38
Programming Reference

PWIDth

PWIDth query

The PWIDth query makes a positive pulse width measurement on the
selected channel. The measurement is made by fmding the time difference
between the 50% points of the frrst rising and the next falling edge
displayed on screen.

Query Syntax: :SCOPe:MEASure:[SOURce CHANnel{112};]PWIDth?

Returned Format: [:SCOPe: MEASure:PWIDth] <value> < NL>

where:

<value>

Example:

MEASure Subsystem
27-12

:: = positive pulse width in seconds

10 DIM Pw$ [100J
20 OUTPUT XXX;":SCOPE:MEASURE:SOURCE CHANNEL2;PWIDTH?"
30 ENTER XXX;Pw$
40 PRINT Pw$
50 END

HP 16528/16538
Programming Reference

RlSETime

RlSETime

HP 16s28/16s38
Programming Reference

,fA The short form of RISETIME is RISETime. This is an intentional
NOte iA deviation from the normal truncation rule.

Query Syntax: :scoPe:MEASure:[soURce cHANnet{ 1 lzhJRtSETime?

Returned Format: [:SCOPe:MEASure:RlSETimeJ <vatue > < NL>

where:

<value > :: = risetime in seconds

Example: 1o Drt'l Tr$ [1oo]
?0 OUTPUT XXX; ": SC0PE :MEASURE :S0URCE CHANNELl ;RISETIME?"

30 ENTER XXX; Tr$

40 PRINT Tr$

50 END

query

The RISETime query makes a risetime measurement on the selected
channel by fiodiog the LUVo and 90Vo voltage levels of the first rising edge
displayed on screen.

MEASure Subsystem
27-13

RISETime

I
Note II

Query Syntax:

Returned Format:

where:

<value>

Example:

HP 16528/16538
Programming Reference

RISETime

query

The RISETime query makes a risetime measurement on the selected
channel by fmding the 10% and 90% voltage levels of the frrst rising edge
displayed on screen.

The short form of RISETIME is RISETime. This is an intentional
deviation from the normal truncation rule.

:SCOPe:MEASure:[SOURce CHANnel{1/2};]RISETime?

[:SCOPe:MEASure:RISETime] <value> < NL>

:: = risetime in seconds

10 DIM Tr$ [100J
20 OUTPUT XXX;":SCOPE:MEASURE:SQURCE CHANNELl;RISETIME?"
30 ENTER XXX;Tr$
40 PRINT Tr$
50 END

MEASure Subsystem
27-13

SOURce

SOURce

MEASure Subsystem
27-14

command/Query

The SOURce comnand specifies the source to be used for subsequent
measurements. If the source is not specified, the last waveform source is
assumed.

Ihe query returns the presently specified channel.

Command Syntax: :SCOPe:MEASure:SOURce <source>

where:

<source> !i= t1 lZ1'

Example: oUTPUT XXX; " : scoPE : MEASURE : SoURCE CHANI"

Query Syntax! :SCOPe:MEASure:SOURce?

Returned Format: [:SCOPe:MEASure:SOURce] CHANnel < N> < NL>

Example: 10 DrM sog [1oo]
20 OUTPUT XXX; ":SCOPE :MEASURE :SOURCE?"

30 ENTER XXX;So$

40 PRINT So$

50 TND

HP 16s28/16538
Programming Reference

SOURce

SOURce command/query

The SOURce command specifies the source to be used for subsequent
measurements. If the source is not specified, the last waveform source is
assumed.

The query returns the presently specified channel.

Command Syntax: :SCOPe:MEASure:SOURce <source>

where:

<source>

Example:

Query Syntax:

Returned Format:

Example:

MEASure Subsystem
27-14

:: = {1 I 2}

OUTPUT XXX;":SCOPE:MEASURE:SOURCE CHANl"

:SCOPe: MEASure:SOURce?

[:SCOPe:MEASure:SOURce] CHANnel<N> <NL>

10 DIM So$ [100]
20 OUTPUT XXX;":SCOPE:MEASURE:SOURCE?"
30 ENTER XXX;So$
40 PRINT So$
50 END

HP 16528/16538
Programming Reference

VAMPlitude

VAMPlitude query

The VAMPlitude query makes a voltage measurement on the selected
channsl. The measurement is made by frnding the relative maximum and
6i1i6rrrn points on screen.

Query Syntax: :SCOPe: MEASure: [SOURce CFlANnel{ 1 | 2i;]VAMPlitude?

Returned Format: [:SCOPe:MEASure:VAMPlitude] <value> <NL>

where:

<value > :: = difference between top and base voltage

Example: 1o DrM vag [1oo]
20 OUTPUT XXX; " : SCOPE :MEASURE:S0URCE CHANNEL2 ;VAMP?"

30 ENTTR XXX;Va$

40 PRINT Va$

50 TND

HP 16s28/16s38
Programming Reference

MEASure Subsystem
27-15

VAMPlitude

VAMPlitude

query

The VAMPlitude query makes a voltage measurement on the selected
channel. The measurement is made by fmding the relative maximum and
minimum points on screen.

Query Syntax: :SCOPe:MEASure:[SOURce CHANnel{112};]VAMPlitude?

Returned Format: [:SCOPe:MEASure:VAMPlitude] <value> < NL>

where:

<value>

Example:

HP 16528/16538
Programming Reference

:: = difference between top and base voltage

10 DIM Va$ [100]
20 OUTPUT XXX;":SCOPE:MEASURE:SOURCE CHANNEL2;VAMP?"
30 ENTER XXX;Va$
40 PRINT Va$
50 END

MEASure Subsystem
27-15

VBASe

VBASe

MEASure Subsystem
27-16

The VBASe query returns the base voltage (relative minimum) of a
displayed waveform. The measurement is made on the selected source.

Query Syntax: : SCOPe: MEASure: [SOURce CHANnel{ 1 | 2};]VBASe?

Returned Format: [:SCOPe:MEASure:VBASe] <value > < NL>

where:

<value > :: = voltage at base level of selected waveform

Example: 10 DrM vb$ [1oo]
20 0UTPUT XXX; " :SCOPE :MEASURE :SOURCE CHAN1 ;VBAS?"

30 ENTER XXX;Vb$

40 PRINT Vb$

50 END

guery

HP 16528/16s38
Programming Reference

VBASe

VBASe query

The VBASe query returns the base voltage (relative minimum) of a
displayed waveform. The measurement is made on the selected source.

Query Syntax: :SCOPe:MEASure:[SOURce CHANnel{112};]VBASe?

Returned Format: [:SCOPe:MEASure:VBASe] <value> < NL>

where:

<value>

Example:

MEASure SUbsystem
27-16

:: = voltage at base level of selected waveform

10 DIM Vb$ [100J
20 OUTPUT XXX;":SCOPE:MEASURE:SOURCE CHAN1;VBAS?"
30 ENTER XXX;Vb$
40 PRINT Vb$
50 END

HP 16528/16538
Programming Reference

VMA)(

VMA)(

HP 16528/16538
Programming Reference

The VMAX query returns the absolute maximum voltage of the selected
source.

Ouery Syntax: :SCOPe:MEASure:[SOURce CHANnel{1 | 2};]VMAX?

Returned Format: [:SCOPe:MEASure:VMM] <vatue> <NL>

where:

<value > :: = ma)(imum voltage of selec-ted waveform

Example: 10 DIM vmag [1oo]
20 0UTPUT XXX; ": SC0PE: MTASURE: SOURCE CHAN2; VMAX?"

30 ENTER XXX; Vma$

40 PRINT Vma$

50 END

query

MEASure Subsystem
27-17

VMAX

VMAX

query

The VMAX query returns the absolute maximum voltage of the selected
source.

Query Syntax: :SCOPe:MEASure:[SOURce CHANnel{112};]VMAX?

Returned Format: [:SCOPe:MEASure:VMAX] <value> <NL>

where:

<value>

Example:

HP 16528/16538
Programming Reference

:: = maximum voltage of selected waveform

10 DIM Vma$ [100J
20 OUTPUT XXX;":SCOPE:MEASURE:SOURCE CHAN2;VMAX?"
30 ENTER XXX;Vma$
40 PRINT Vrna$
50 END

MEASure Subsystem
27-17

VMIN

VMIN

MEASure Subsystem
27-19

The VMIN query returns the absolute mirimrm voltage present on the
selected source.

Query Syntax: :SCOPe:MEASure: [SOURce CHANnel{ 1 | 2h]vMlN?

Returned Format: [:SCOPe:MEASure VMIN] <value> <NL>

where:

<value > :: = minimum voltage of selected waveform

Example: to DIM vmi$ [loo]
20 OUTPUT XXX; " : SC0PE :MEASURE : S0URCE CHANi ;VMIN?"

30 ENTER XXX; Vmi$

40 PRINT Vmi$

50 END

query

HP 16528/16538
Programming Reference

VMIN

VMIN query

The VMIN query returns the absolute minimum voltage present on the
selected source.

Query Syntax: :SCOPe:MEASure:[SOURce CHANnel{112};]VMIN?

Returned Format: [:SCOPe:MEASure VMIN] <value> < NL>

where:

<value>

Example:

MEASure Subsystem
27-18

:: = minimum voltage of selected waveform

10 DIM Vmi$ [100J
20 OUTPUT XXX;":SCOPE:MEASURE:SOURCE CHANl;VMIN?"
30 ENTER XXX;Vmi$
40 PRINT Vmi$
50 END

HP 16528/16538
Programming Reference

VPP

VPP

HP 16s28/16538
Programming Reference

The VPP query makes a peak-to-peak voltage measurement on the
selected source. The measurement is made by finding the absolute
maximum and minimun points on the displayed waveform.

Query Syntax: :SCOPe:MEASure:[SOURce CHANnel{1 l2h]VPP?

Returned Format: [:SCOPe:MEASuro:VPP] <value> <NL>

where:

<value > ::- peak to peak voltage of selected waveform

Example: 10 DIM vpp$ [too]
20 OUTPUT XXX; ": SC0PE:MTASURE: S0URCE CHANi ; VPP?"

30 ENTER XXX;Vpp$

40 PRINT Vpp$

50 END

query

MEASure Subsystem
27-19

vpp

The VPP query makes a peak-to-peak voltage measurement on the
selected source. The measurement is made by rmding the absolute
maximum and minimum points on the displayed waveform.

Query Syntax: :SCOPe:MEASure:[SOURce CHANnel{1/2};]VPP?

Returned Format: [:SCOPe:MEASure:VPP] <value> < NL>

where:

vpp

query

<value>

Example:

HP 16528/16538
Programming Reference

:: = peak to peak voltage of selected waveform

10 DIM Vpp$ [100J
20 OUTPUT XXX;":SCOPE:MEASURE:SOURCE CHANl;VPP?"
30 ENTER XXX;Vpp$
40 PRINT Vpp$
50 END

MEASure Subsystem
27-19

vTOP

VTOP

MEASure Subsystem
27-20

query

The VTOP query returns the voltage at the top (relative maximum) of
waveform on the selected source.

Query Syntax: :SCOPo:MEASure: [SOURce CHANnel{ 1 | 2};]wOP?

Returned Format: [:SCOPe:MEASure:WOP] <value> <NL>

where:

<value > ::= vottage at the top of the selested waveform

Example: 10 Drtl vtg [1oo]
20 0UTPUT XXX; " : SCOPE : MEASURE : SOURCE CHAN2; VT0P?"

30 ENTER XXX; Vt$

40 PRINT Vt$

50 END

HP 16528/16538
Programming Reference

VTOP

VTOP query

The vroP query returns the voltage at the top (relative maximum) of
waveform on the selected source.

Query Syntax: :SCOPe:MEASure:[SOURce CHANnel{112};]VTOP?

Returned Format: [:SCOPe:MEASure:VTOP] <value> <NL>

where:

<value>

Example:

MEASure Subsystem
27-20

:: = voltage at the top of the selected waveform

10 DIM Vt$ [100]
20 OUTPUT XXX;":SCOPE:MEASURE:SOURCE CHAN2;VTOP?"
30 ENTER XXX;Vt$
40 PRINT Vt$
50 END

HP 16528/16538
Programming Reference

Ig=
d.E
9E
d(ct+o
=o-o.TI T
FJ
-rt5Jac
a;-'o I

6'
=

[-I

Message Communication
and System Functions

lntroduction

Note

HP 16s28/16538
Programming Relerence

This appendix describes the operation of instruments that operate in
compliance with the IEEE 48,8.2 (sptrur) standard. Althougb the
HP 16528 and HP 16538 logic analyzers are RS-232C instruments, they
were designed to be compatible with other Hewlett-Packard IEEE 488.2

compatible instruments.

The IEEE 488.2 standard is a new standard. Instruments that are
compatible with IEEE 488.2 must also be compatible with IEEE 488.L
(HP-IB bus standard); however, IEEE 488.1- compatible instruments may
or may not conform to the IEEE 488.2 standard. The IEEE 488.2

standard defines the message exchange protocols by which the instrument
and the controller wiil communicate. It also defines some common
capabilities, which are found in all IEEE 488.2 instruments. This
appendix also contains a few items which are not specifically defined by
IEEE 488.2, but deal with message communication or system functions.

The synta,x and protocol for RS-232C program messages and response
messages for the HP 1652B,116538 are structured very similar to those
described by 488.2. In most cases, the same structure shown in this
appendix for 4ffi.2 will also work for RS -232C. Because of this, no
additional information has been included for RS-232C.

Message Communication and System Functions
A-1

Message Communication
and System Functions

A

Introduction

I~I
Note"

HP 16528/16538
Programming Reference

This appendix describes the operation of instruments that operate in
compliance with the IEEE 488.2 (syntax) standard. Although the
HP 1652B and HP 1653B logic analyzers are RS-232C instruments, they
were designed to be compatible with other Hewlett-Packard IEEE 488.2
compatible instruments.

The IEEE 488.2 standard is a new standard. Instruments that are
compatible with IEEE 488.2 must also be compatible with IEEE 488.1
(HP-IB bus standard); however, IEEE 488.1 compatible instruments may
or may not conform to the IEEE 488.2 standard. The IEEE 488.2
standard defmes the message exchange protocols by which the instrument
and the controller will communicate. It also defines some common
capabilities, which are found in all IEEE 488.2 instruments. This
appendix also contains a few items which are not specifically dermed by
IEEE 488.2, but deal with message communication or system functions.

The syntax and protocol for RS-232C program messages and response
messages for the HP 1652B/1653B are structured very similar to those
described by 488.2. In most cases, the same structure shown in this
appendix for 488.2 will also work for RS-232C. Because of this, no
additional information has been included for RS-232C.

Message Communication and System Functions
A-1

-

PfOIOCOIS The protocols of IEEE 488.2 define the overall scheme used by the
controller and the instrument [s gsnslrrnigate. This includes defining
when it is appropriate for devices to talk or listen, and what happens when
the protocol is not followed.

Functional Elements Before proceeding with the description of the protocol, a few system

components should be understood.

Input Buffer. The input buffer of the instrument is the memory area
where commands and queries are stored prior to being parsed and
executed. It allows a controller to send a string of commands to the
instrument which could take some time to execute, and then proceed to
talk to another instrumeut while the fust instrument is parsing and
executing commands.

Output Queue. The output queue of the instrument is the memory area
where all output data (< response messages >) are stored until read by
the controller.

Parser. The instrument's parser is the component that interprets the
commands sent to the instrument and decides what actions should be
taken. "Parsing" refers to the action taken by the parser to achieve this
goal. Parsing and executing of commands begins when either the
instrument recognizes a < program message terminator > (defined later
in this appendix) or the input buffer becomes full. If you wish to send a
long sequence of cornmands to be executed and then talk to another
instrument while they iue executing, you should send all the commands

before sending the < progam message terminator > .

Message Communication and System Functions
A-2

HP 1652B./16s38
Programming Reference

Protocols The protocols of IEEE 488.2 defme the overall scheme used by the
controller and the instrument to communicate. This includes defming
when it is appropriate for devices to talk or listen, and what happens when
the protocol is not followed.

Functional Elements Before proceeding with the description of the protocol, a few system
components should be understood.

Input Buffer. The input buffer of the instrument is the memory area
where commands and queries are stored prior to being parsed and
executed. It allows a controller to send a string of commands to the
instrument which could take some time to execute, and then proceed to
talk to another instrument while the first instrument is parsing and
executing commands.

Output Queue. The output queue of the instrument is the memory area
where all output data (< response messages>) are stored until read by
the controller.

Parser. The instrument's parser is the component that interprets the
commands sent to the instrument and decides what actions should be
taken. "Parsing" refers to the action taken by the parser to achieve this
goal. Parsing and executing of commands begins when either the
instrument recognizes a < program message terminator> (dermed later
in this appendix) or the input buffer becomes full. If you wish to send a
long sequence of commands to be executed and then talk to another
instrument while they are executing, you should send all the commands
before sending the < program message terminator> .

Message Communication and System Functions
A-2

HP 16528/16538
Programming Reference

Protocol Overview

Protocol Operation

HP 16528/16538
Programming Relerence

The instrument and controller communicate using < program message > s

and < response message > s. These messages serve as the containers into
which sets of program commands or instrument responses are placed.
< program message > s are sent by the controller to the instrument, and
< response message > s are sent from the instrument to the controller in
response to a query message. A < query message > is defined as being a

< program rlessage > which contains one or more queries. The
instrument will only talk when it has received a valid query message, and
therefore has something to say. The controller should only attempt to
read a response after sending a complete query message, but before
sending another < program message > . The basic rule to remember is
that the instrument will only talk when prompted to, and it then expects to
talk before being told to do something else.

When the instrument is turned on, the input buffer and output queue are
cleared, ffid the parser is reset to the root level of the command tree.

The instrument and the controller communicate by exchangng complete
< program message > s and < response message > s. This means that the
controller should always terminate a < program message > before
attempting to read a response. The instrument will terminate < response
message > s except during a hard@py output.

If a query message is sent, the next message passing over the bus should
be the < response message > . The controller should always read the
complete < response message > associated with a query message before
sendirg another < program message > to the same instrument.

The instrument allows the controller to send multiple queries in one query
message. This is referred to as sending a "compound query." As will be
noted later in this appendi4 multiple queries in a query message are
separated by semicolons. The responses to each of the queries in a
compound query will also be separated by semicolons.

Commands are executed in the order they are received.

Message Communication and System Functions
A-3

Protocol Overview The instrument and controller communicate using < program message> s
and < response message> s. These messages serve as the containers into
which sets of program commands or instrument responses are placed.
< program message> s are sent by the controller to the instrument, and
< response message> s are sent from the instrument to the controller in
response to a query message. A < query message> is defmed as being a
< program message> which contains one or more queries. The
instrument will only talk when it has received a valid query message, and
therefore has something to say. The controller should only attempt to
read a response after sending a complete query message, but before
sending another < program message>. The basic rwe to remember is
that the instrument will only talk when prompted to, and it then expects to
talk before being told to do something else.

Protocol Operation When the instrument is turned on, the input buffer and output queue are
cleared, and the parser is reset to the root level of the command tree.

The instrument and the controller communicate by exchanging complete
< program message> s and < response message> s. This means that the
controller should always terminate a < program message> before
attempting to read a response. The instrument will terminate < response
message> s except during a hardcopy output.

If a query message is sent, the next message passing over the bus should
be the < response message>. The controller should always read the
complete < response message> associated with a query message before
sending another < program message> to the same instrument.

The instrument allows the controller to send multiple queries in one query
message. This is referred to as sending a "compound query." As will be
noted later in this appendix, multiple queries in a query message are
separated by semicolons. The responses to each of the queries in a
compound query will also be separated by semicolons.

Commands are executed in the order they are received.

HP 16528/16538
Programming Reference

Message Communication and System Functions
A-3

Protocol Exceptions If an error occurs during the information exchange, tle exchange maynot
fs sqmpleted in a normal menner. Some of the protocol exceptions are
shown below.

Command Eror. A command error will be reported if the instrlment
detects a slmtax error or an unrecopized com-and header.

Execution Error. An execution error will be reported if a parameter is
found to be out of range, or if the current seltings do not allow execution
of a requested command or query.

Device-specilic Error. A device-specific error will be reported if the
instlment is unable to execute a command for a strictly device dependent
reason.

Query Error. A query error will be reported if the proper protocol for
reading a query is not followed. This includes the interrupted and
unterminated conditions described in the following paragraphs.

Message Communication and System Functions
A-4

HP 16528../16538
Programming Reference

Protocol Exceptions If an error occurs during the information exchange, the exchange may not
be completed in a normal manner. Some of the protocol exceptions are
shown below.

Command Error. A command error will be reported if the instrument
detects a syntax error or an unrecognized command header.

Execution Error. An execution error will be reported if a parameter is
found to be out of range, or if the current settings do not allow execution
of a requested command or query.

Device-specific Error. A device-specific error will be reported if the
instrument is unable to execute a command for a strictly device dependent
reason.

Query Error. A query error will be reported if the proper protocol for
reading a query is not followed. This includes the interrupted and
unterminated conditions described in the following paragraphs.

Message Communication and System Functions
A-4

HP 16528/16538
Programming Reference

Syntax
Diagrams

The synta;< diagrams in this appendix are similar to the slmtar diagratt'rs in
the IEEE 4f,l8.2 specification. Commands and queries are sent to the
instru*ent as a sequence of data bytes. The allowable byte sequence for
each functional element is defined by the synta:r diagrarn that is shown
with the element description.

The allowable byte sequence can be determined by following a path in the
slmta:r diagrat. The proper path through the sptzur diagram is any path
that follows the direction of the arrows. If there is a path around an
element, that element is optional. If there is a path from right to left
around one or more elements, that element or those elements may be
repeated as many times as desired.

Syntax
Overuiew

HP 16528',/16538
Programming Reference

This overview is intended to grve a quick glance at the synta:r defined by
IEEE 488.2. It should allow you to understand many of the things about
the syntax you need to know. This appendix also contains the details of
the IEEE 488.2 defined s\mtax.

IEEE 488.2 defines the blocks used to build messages which are sent to
the instrument. A whole string of commands can therefore be broken up
into individual components.

Figure A-1 shows a breakdown of an example < program message > .

There are a few key items to notice:

1,. A semicolon separates commands from one another. Each
< program message utrit > serves as a container for one commnld.
The < progam message unit > s iue sepzuated by a semicolon.

2. A < program message > is terminated by a < NL > (new line). The
recogtrition of the < progam message terminator), or < PMT > ,

by the parser serves as a signal for the parser to begin execution of
commands. The < PMT > also affects command tree traversal (see

the Pro$amming and Documentation Conventions chapter).

3. Multiple data parameters are separated by a comma..

Message Communication and System Functions
A-5

Syntax
Diagrams

Syntax
Overview

HP 16528/16538
Programming Reference

The syntax diagrams in this appendix are similar to the syntax diagrams in
the IEEE 488.2 specification. Commands and queries are sent to the
instrument as a sequence of data bytes. The allowable byte sequence for
each functional element is defmed by the syntax diagram that is shown
with the element description.

The allowable byte sequence can be determined by following a path in the
syntax diagram. The proper path through the syntax diagram is any path
that follows the direction of the arrows. If there is a path around an
element, that element is optional. If there is a path from right to left
around one or more elements, that element or those elements may be
repeated as many times as desired.

This overview is intended to give a quick glance at the syntax defmed by
IEEE 488.2. It should allow you to understand many of the things about
the syntax you need to know. This appendix also contains the details of
the IEEE 488.2 defmed syntax.

IEEE 488.2 defmes the blocks used to build messages which are sent to
the instrument. A whole string of commands can therefore be broken up
into individual components.

Figure A-I shows a breakdown of an example < program message>.
There are a few key items to notice:

1. A semicolon separates commands from one another. Each
< program message unit > serves as a container for one command.
The < program message unit > s are separated by a semicolon.

2. A < program message> is terminated by a < NL > (new line). The
recognition of the < program message terminator> , or < PMT > ,
by the parser serves as a signal for the parser to begin execution of
commands. The < PMT > also affects command tree traversal (see
the Programming and Documentation Conventions chapter).

3. Multiple data parameters are separated by a comma..

Message Communication and System Functions
A-5

Message Communication and System Functions
A-6

4. The first data porameter is separated from the header with one or
more spaces.

5. The header MACHINEI:ASSIGN 2.3 is an example of a compound
header. It places the parser in the machine subsystem until the
< NL > is encountered.

6. A colon preceding the command header returns you to the top of the

command treg.

HP 1652B.116538
Programming Reference

4. The frrst data parameter is separated from the header with one or
more spaces.

5. The header MACHlNEl:ASSIGN 2,3 is an example of a compound
header. It places the parser in the machine subsystem until the
< NL> is encountered.

6. A colon preceding the command header returns you to the top of the
command tree.

Message Communication and System Functions
A-6

HP 16528/16538
Programming Reference

TWAVTFORM : OSEARCH 3Q , TR IGGTR

(progrom messoge un i t)

DELAY 3.8 ns <NL>

TWAVEFORM:OSEARCH 30, TRIGGER

<wh i s poce>

T
\

\
I

\

heo

<prog

numer

seporotor> <progrom doto)
30 , TRIGGIR

(wh i te

doto> <progrom doto seporotor><progrom mnemon ic)
TWAVE FORM

rom
3@

T
I

I

I

ic
30

<progr om do to>
tn ?

^^rnI K 1b'r:Ll(

progrom doto) (progrom doto)
TR iGGER

<progrom messoqe unit>
DELAY 3.8 ns

(p r ogr om

(wh i te

mes s
SP
7-

s poc

oge terrninotor)
<NL>-T

\
\
\

e> NL

3.8 ns

// \\

1\
<white spoce> (suffix multiplier> (suffix unit>

NS

Figure A-1

Message Communication and System Functions
A-7

<corrmond progrom heoder)
TWAVEFORM: OSfARCH

(progr orn messonlorl'
lorepor

o to r)

; T \
-/l\

,/l\,/l\
<wh i te spoce> ; <wh i te spoce>

r65m/8131

<progrom

<Progrom rnnernon tc>
OSEARCH

(dec imo I

<progrom heoder> <progrom heoder seporotor) <progrom doto)
DELAY

(white spoce> (decimol progrom doto) (suf f ix progrorn doto)
3.8 5P ns

HP 16528/16s38
Programming Reference

:TWAVEFORM:OSEARCH 30,TRIGGER

I I 1
DELAY 3.8 ns <NL>

T'

<program data>
30 , TRIGGER

/\\~
SP SP

1\
<wh I te space> <wh I te space><white space>

<program header separator>
SP

\

<program message unit>
TWAVEFORM:OSEARCH 30,TRIGGER

~ ~~
<command program header>

TWAVEFORM:OSEARCH

<pragram mnemonic>
TWAVEFORM

<program mnemonic>
OSEARCH

<program data> <program data separator>
30

I
<program data>

TRIGGER

~
<decimal numeric program data>

30
<program data>

TRIGGER

<program message unit separator>

/I~
<white space> <white space>

<program message unit>
DELAY 3.8 ns

7
<program message terminator>

SP <NL>

!\
<wh i te space> NL

<program header> <program header separator> <program data>
DELAY SP 3.8 ns

~ ~---------<white space> <decimal program data> <suffix program data>
3.8 SP ns

~I~
<wh i t e spa ce> <s u f fix mu I tip lie r > <s u f fix un it>

n
16500/BL31

Figure A-1. < program message> Parse Tree

HP 16528/16538
Programming Reference

Message Communication and System Functions
A-7

Device Listening
Syntax

Message Gommunication and System Functions
A-g

The listening sptar of IEEE 488.2 is designed to be more forgiving than
the talking syntax. This allows greater flexibility in writing progarns, as

well as allowing them to be easier to read.

Upper/Lower Case Equivalence. Upper and lower c:me letters are
equivalent. The mnemonic SINGLE has the same semantic msaning as

the mnemonic single.

< white space) . < white space > is defined to be one or more characters
from the ASCII set of 0 - 32 decimal, excluding 10 decimal (NI-). < white
space > is used by several instrument listening components of the slmta:r.
It is usually optional, and can be used to increase the readabiliry of a
program.

Figure A-2. < white space >

HP 16s28/16538
Programming Reference

Device Listening
Syntax

The listening syntax of IEEE 488.2 is designed to be more forgiving than
the talking syntax. This allows greater flexibility in writing programs, as
well as allowing them to be easier to read.

UpperlLower Case Equivalence. Upper and lower case letters are
equivalent. The mnemonic SINGLE has the same semantic meaning as
the mnemonic single.

< white space>. < white space> is defmed to be one or more characters
from the ASCII set of 0 - 32 decimal, excluding 10 decimal (NL). < white
space> is used by several instrument listening components of the syntax.
It is usually optional, and can be used to increase the readability of a
program.

[
..

LJ.. <while space
charact.er>

5-4120/Bl38

Figure A-2. < white space>

Message Communication and System Functions
A-8

HP 16528/16538
Programming Reference

HP 16528/16s38
Programming Reference

< program message) . The < program message > is a complete message
to be sent to the instrument. The instrument will begro executing
commands once it has a complete < progam message), or when the
input buffer becomes full. The parser is also repositioned to the root of
the command tree after executiog a complete < program message > .

Refer to "Tree Traversal Rules" in the "Programming and Documentation
Conventions," chapt er 4 for more details.

Figure A-3. < program message >

< program message unit) . The < program message unit > is the
container for individual commands within a < program message >.

Figure A-4. < program message unit >

Message Communication and System Functions
A-g

<progrom
messoge un it

seporotor>

<progrom
messoge un i t>

<progrom
messoge

terminotor)

<conrnond messooe un it>

(query messoge un i t)

< program message>. The < program message> is a complete message
to be sent to the instrument. The instrument will begin executing
commands once it has a complete < program message> , or when the
input buffer becomes full. The parser is also repositioned to the root of
the command tree after executing a complete < program message> .
Refer to "Tree Traversal Rwes" in the "Programming and Documentation
Conventions," chapter 4 for more details.

<program
message unit

separator>

<program
message unit>

54120/BL39

<program
message

terminator>

HP 16528/16538
Programming Reference

Figure A-3. < program message>

< program message unit>. The < program message unit> is the
container for individual commands within a < program message> .

<command message unit>

<query message unit>

54'20/8L~O

Figure A-4. < program message unit>

Message Communication and System Functions
A-9

<progrom doto
seporotor)

<progrom
h eode r

seporotor>
(progrom doto)

(conmond
progrom
heode r >

<progr om doto
seDorotor>

(query
pro9rom
heoder)

<progrom
heoder

seporotor)

Figure A-5. < command message unit >

Figure A-6. < query message unit >

Message Communication and System Functions
A-10

HP 16528.,/16538
Programming Reference

<conmand
program

~

<program
header

separator>

<program data
separator>

)----'"--~I <program data> ~-~-~

54120/BL41

<query
program
header>

Figure A-5. < command message unit >

<program data
separator>

<program
header

separator>

5-4120/Bl-42

Figure A-6. < query message unit>

Message Communication and System Functions
A-10

HP 16528/16538
Programming Reference

HP 16528/16538
Programming Relerence

< program message unit separator) . A semicolon separates < program
message unit; sr or individual commands.

Figure A-7. < program message unit separator>

(command program header > / < query program header) . These
elements serve as the headers of commands or queries. They represent
the action to be taken.

Figure A-8. < command program header>

Message Communication and System Functions
A-11

(wh i te sooce> <simple conmond
progrom heoder)

(compound conmond
progrom heoder)

< program message unit separator>. A semicolon separates < program
message unit > s, or individual commands.

<white space>

54120/BL43

Figure A-7. < program message unit separator>

< command program header> / < query program header>. These
elements serve as the headers of commands or queries. They represent
the action to be taken.

<white space>
<simple corrmand
program header>

<compound command
program header>

<corrrnon corrrnand
program header>

54 1Z0/BL"'I4

HP 16528/16538
Programming Reference

Figure A-8. < command program header>

Message Communication and System Functions
A-11

Message Communication and System Functions
A-12

Where < sirnple command program header> is defined as

Where <compound commond program header> is defined as

Where <progrom mnemonic> is defined as

Where <upperllower case atpha> ri defined as a single ASCI| iiioded
byte in the range 41 - 5A, 61 - 7A (65 - 90, 97 - 122 decimal)"

Where < digtt> is defined as a single ASCII encoded byte in the range 30 -

39 (48 - 57 decimal).

Where (_) represents an "underscore", a single ASCII-encoded byte with the

value 5F (95 decimal).

Figure A-8. < command program header > (continued)

HP 1652B/16s38
Programming Relerence

<progrorn
mn emon i c)

<pro9rom
mnemon i c)

Where lcommon command program header> is defined as

<upper/lower
cose o I pho>

(upperl'lower
cose o I pho>

<digit>

Where < simple command program header> is defined as

<program
mnemon i c> --

54120/8L45

Where < compound command program header> is defined as

[
<program

mnemon j c>
<program

mnemonic>

54120/BL45

Where < common commandprogram header> is defined as

-0- <program
mnemonic>

54120/8L45

U1here <program mnemonic> is defined as

<upper/lower
case alpha>

<upper/lower
case alpha>

<digit>

54120/BL45

U1here < upper/lower case alpha> is defined as a single ASCII encoded
byte in the range 41- SA, 61- 7A (65 - 90, 97 - 122 decimal).

U1here < digit> is defined as a single ASCII encoded byte in the range 30 ­
39 (48 - 57 decimal).

Ulhere (_) represents an "underscore'~ a single ASCII-encoded byte with the
value 5F (95 decimal).

Figure A-8. < command program header> (continued)

Message Communication and System Functions
A-12

HP 16528/16538
Programming Reference

(wh ite sDoce>
(simple query
progrom heoder)

<cornpound query
progrorn heoder>

<conTnon query
progrom heoder)

Where < simple Erery program header> is defined as

Where <compound E try;;;r';;; header> is defined as

Figure A-9. < query program header >

HP 16s28/16538
Programming Reference

Message Communication and System Functions
A-13

<progrom
rnnemon ic)

<Progrom
rnnemon i c)

<progrom
mnemon i c>

Where l common cluery program header > r.s defined as

T <white space> - <simple query
~

f
- program header>

;.

~
<compound query

~program header>

~
<COrTmon query -program header> -

5Al1Z0/8L-46

"Where <simple queryprogram header> is defined as

.... <program
mnemonic>

5A1120/8L46

"Where < compound query program header> is defined as

.... <program
mnemon i c>

<program
mnemonic>

5A1120/8L46

HP 16528/16538
Programming Reference

"Where < common queryprogram header> is defined as

~I,----<p_rogra---,m ~t?\-
~~emonic>

504120lBl46

Figure A-9. < query program header>

Message Communication and System Functions
A-13

Message Communication and System Functions
A-14

< program data) . The < program data > element represents tle
possible types of data which may be sent to the instrument. The
HP L6528116538 will accept the following data tlpes: < character
program data >, < decimal numeric program data >, < suffix program
data >, < string program data), ild < arbitrary block program data >.

'4120/8L17

Figure A-10. < program data >

Figure A-1 1. < character program data >

HP 16s28/16538
Programming Reference

(chorocter
progrom doto>

<dec imo I numer rc
progrom doto)

(suffix
progrom doto)

(str ing
progrom doto>

<orbitrory
block

roorom doto>

< program data>. The < program data> element represents the
possible types of data which may be sent to the instrument. The
HP 1652B/1653B will accept the following data types: < character
program data>, < decimal numeric program data>, < SUffIX program
data>, < string program data> , and < arbitrary block program data> .

<character
program dolo>

<decimal numeric
program data>

<str ing
program dolo>

<arbitrary
block

rogram dolo>

54'20/BL<47

Figure A-10. < program data>

<program
mnemonic>

54120/8l4e

Figure A-11. < character program data >

Message Communication and System Functions
A-14

HP 16528/16538
Programming Reference

Where <mantissa> is defined as

<optionol
d i g i ts> <digit>

<digit> (optionol
digits>

Where < optional digits > is defined as

HP 16528/16538
Programming Relerence

Where <exponent> is defined as

Figure A-12. < decimal numeric program data >

Message Communication and Systern Functions
A-15

<digit>(wh i te spoce>

--1 h-. <wh i te ~<mantissa> ~~---~ <exponent>

~- '----spa_ce> - J
5-4120/BL49

Where < mantissa> is defined as

<op tiona I
digits>

<digit>

<digit>
<optional

digits>

S4120/BL4Q

Where < optional digits> is defined as

<digit>

5-41Z01BL51

Where < exponent> is defined as

<white space> <digit>

5-41Z0/BL50

HP 16528/16538
Programming Reference

Figure A-12. <decimal numeric program data>

Message Communication and System Functions
A-15

(suffix unit)(wh i te spoce> (suff ix mult)

Figure A-13. < suffix program data >

Suffix Multiplier. The suffix multipliers that the instrument will accept
iue shown in table A-L.

Table A-1

Value Mnemonic

1818
181,5

LE,LZ

189
1E6
183
1E-3
1E-6
1E-9
LE.-L2

1E-15
1E-18

EX
PE
T
G
MA
K
M
U
N
P

F
A

Sufiix Unit. The suffx units that the instrument will accept are shown in
table A-2.

Table A-2. < suffix unit >

Sullix Referenced Unit

V
S

Volt
Second

Message Communication and System Functions
A-16

HP 16528/16s38
Programming Reference

<white space> <suffix mul t> <suffix unit>

54120/Bl52

Figure A-13. < suffix program data>

Suffix Multiplier. The SuffIX multipliers that the instrument will accept
are shown in table A-I.

Table A-1. <suffix mull>

Value Mnemonic

lEI8 EX
lEI5 PE
lEI2 T
lE9 G
lE6 MA
IE3 K
IE-3 M
lE-6 U
IE-9 N
IE-l2 P
IE-l5 F
IE-I8 A

Sufllx Unit. The SuffIX units that the instrument will accept are shown in
table A-2.

Table A-2. < suffix unit>

SuffIX Referenced Unit

V Volt
S Second

Message Communication and System Functions
A-16

HP 16528/16538
Programming Reference

<inserted')

(non-single
quote chor)

< i nser ted")

(non-doub I e

quote chor)

HP 16s28/16s38
Programming Reference

Where <inserted'> is defined as a single ASCII characterwith the value 27
(39 decimal).

Wtere <non-single quote char> is defined as o single ASCil character of
any value except 27 (39 decimal).

Where <inserted " > is defined as a single ASCU character with the value 22
(34 decimal).

Wtere <non-double quote char> is defined as o single ASCII character of
any value except 22 (34 decimal)

Figure A-14. < string program data >

Message Communication and System Functions
A-17

<inserted'>

<non-single
quote char>

<inserted">

II

\~

HP 16528/16538
Programming Reference

<non-double
quote char>

5-4120/BL53

Ulhere < inserted' > is defined as a single ASCII character with the value 27
(39 decimal).

Where <non-single quote char> is defined as a single ASCII character of
any value except 27 (39 decimal).

Ulhere < inserted" > is defined as a single ASCII character with the value 22
(34 decimal).

Where < non-double quote char> is defined as a single ASCII character of
any value except 22 (34 decimal)

Figure A-14. < string program data>

Message Communication and System Functions
A-17

<B-b i t
doto byte>

<non-z e r o

digit> <digit>

<8-b i t
doto byte>

Message Communication and System Functions
A-19

Where <non-zero digit > is defined as a single ASCII encoded byte in the

range 31 - 39 (49 - 57 decimal).

Where < &bit byte > is defined as an 9-bit byte in the range 00 - FF (0 - 255

decimal).

Figure A-15. <arbitrary block program data>

< program data separ?tor) . A comma separates multiple data
porameters of a command from one another.

rL55

Figure A-16. < program data separator>

HP 16s2B/16538
Programming Reference

<wh i te spoce><wh i te spoce>

---.#

<non-zero
digit> <digit>

<8-bitl ~:a_tob_

Yte>_J

<8-bit ~~
~~-~_d_O_tO_b_Yt_e>---,I-----'--r--~\~~

54120/8L54

Where < non-zero digit> is defined as a single ASCII encoded byte in the
range 31- 39 (49 - 57 decimal).

Where < 8-bit byte> is defined as an 8-bit byte in the range 00 - FF (0 - 255
decimal).

Figure A-15. <arbitrary block program data>

< program data separator>. A comma separates multiple data
parameters of a command from one another.

1. <wh i te space> I

~

<white space>

54120/8L55

Figure A-16. < program data separator>

Message Communication and System Functions
A-18

HP 16528/16538
Programming Reference

< program header separator) . A space sepiuates the header from the
fust or only p&rameter of the 6pmmand.

Figure A-17. < program header separator >

< program message teminator) . The < program message terminator >
or < PMT > serves as the terminator to a complete < program
message). When the parser sees a complete < progam message > it
will begin execution of the commands within that message. The < PMT >
also resets the parser to the root of the command tree.

51120/9L73

HP 16528/16s38
Programming Reference

Where < NL > is defined as a single ASCII-encoded byte 0A (10 decimal).

Figure A-18. < program message terminator>

Message Communication and System Functions
A-19

(wh i te spoce)

< program header separator>. A space separates the header from the
fIrst or only parameter of the command.

----1...1 <wh i te space>

54\ 120/Bl56

Figure A-17. < program header separator>

< program message terminator>. The < program message terminator>
or < PMT > serves as the terminator to a complete < program
message>. When the parser sees a complete < program message> it
will begin execution of the commands within that message. The < PMT >
also resets the parser to the root of the command tree.

~---""I <wh i t.e space>

HP 16528/16538
Programming Reference

'----------t~ <N L>
54120/Bl73

JVhere < NL > is defined as a single ASCII-encoded byte OA (10 decimal).

Figure A-18. <program message terminator>

Message Communication and System Functions
A-19

: SYSTTM:ARMBNC 1;: TWAVTFORM:DfLAY 3. BE-g <NL>

<response messoge un I

: SYSTEM: ARMBNC

t> <response messoge
1

<r espon

(response mnemon r c)
SYS TEM

<response heoder) <response heoder seporotor)
: TWAVEFORM: DELAY SP/7/\ l:///'\\

<response mnemon i c> <response mnemon i c) <wh i te spoce> <NR3

TWAVEFORM DTLAY

Figure A-19. < response message > Tree

Message Communication and System Functions
A-20

1 6500/8130

HP 16s28/16s38
Programming Reference

<r esDon se

<response mnemon I c>
ARMBNC

<response messoge unt t>
: TWAVEFORM : DE LAY 3 . BE-9

seporotor>

spoce) <NR1 numer

<response messoge terminotor>
NL

(resDonse doto)
3 . BE-9

numeric response doto>
3 _ Bt-9

:SYSTEM:ARMBNC :TWAVEFORM:DELAY 3.8E-9 <NL>L__

<response header separator>
SP

\

<response message unit separator><response message unit>
:SYSTEM:ARMBNC 1

\
<response header>

~:SYSTEM:ARMBNC

:~~
<response mnemonic> <response mnemonic>

SYSTEM ARMBNC
<white space>

<response data>
1

I
<NR1 numeric response data>

1

<white space> <NR3 numer ic response data>
3.8E-9

<response mnemonic>
DELAY

<response message terminator>
NL

<response header>
: TWAVEFORM:DELAY

:'l/ l~

<response data>
3.8E-9

T
<response header separator>

SP

\

<response message unit>
:TWAVEFORM:DELAY 3.8E-9

~ '\
<response mnemonic>

TWAVEFORM

16500/BL30

Figure A-19. < response message> Tree

Message Communication and System Functions
A-20

HP 16528/16538
Programming Reference

Device Talking Syntax The talking spta:r of IEEE,A8.2 is desiped to be more precise than the
lislsning syntar This allows the programmer to write routines which can
easily interpret and use the data the instrumepl i5 se11ding. One of the
implications of this is the absence of < white space > in the talking
formats. The instrument will not pad messages which are being sent to the
controller with spaces.

< nesponse messsge > . This element serves as a complete response from
the instrrrment. It is the result of the instrument executing and buffering
the results from a complete < progrtm message >. The complete
< response message > should be read before sending another < program
message > to the instrument.

Figure A-20. < response message >

< response message unit) . This element serves as the container of
individual pieces of a response. Typically a < query message unit > wiil
generate one < response message unit >, dthough a < query message

utrit > may generate multiple < response message unit > s.

< response header) . The < response header > , when returned,
indicates what the response data represents.

HP 16528./16538
Programming Reference

Message Communication and System Functions.
A-21

<response
rnessoge un it

seDorqtor)

<response rnessoge
term i no tor)

<resDonse
messoge un it>

Device Talking Syntax The talking syntax of IEEE 488.2 is designed to be more precise than the
listening syntax. This allows the programmer to write routines which can
easily interpret and use the data the instrument is sending. One of the
implications of this is the absence of < white space> in the talking
formats. The instrument will not pad messages which are being sent to the
controller with spaces.

< response message>. This element serves as a complete response from
the instrument. It is the result of the instrument executing and buffering
the results from a complete < program message>. The complete
< response message> should be read before sending another < program
message> to the instrument.

<response
message unit

separator>

<response
message unit>

~~ ~ <response message
terminator>

54120/BL57

HP 16528/16538
Programming Reference

Figure A-20. < response message>

< response message unit>. This element serves as the container of
individual pieces of a response. Typically a < query message unit > will
generate one < response message unit > , although a < query message
unit > may generate multiple < response message unit > s.

< response header>. The < response header> , when returned,
indicates what the response data represents.

Message Communication and System Functions
A-21"

(simple
response
heoder)

<compound
response
heoder)

(conmon
r esponse
heode r)

34120/9L58

Where < simple response mnemonic > is defined as

Where <compound response header> is defined as

Where < common response header >' ,s defined as

Figure A-21. <response message unit>

Message Communication and System Functions
A-22

54 120l8160

HP 16s28/16538
Programming Relerence

<r espons e

mnemon i c)

<s imp Ie
response
header>

<compound
response
header>

<comnon
response
header>

54120/BL58

Where < simple response mnemonic> is defined as

<response
mnemonic>

5-$ 120/BL59

Where < compound response header> is defined as

<response
mn ernon j c>

<response
mnemonic>

54120/Bl60

Where < common response header>' is defined as

<response
mnemonic>

54120/Bl61

Figure A-21. < response message unit>

Message Communication and System Functions
A-22

HP 16528/16538
Programming Reference

HP 1652B.116s38
Programming Reference

Where <response mnemonic) u defined as

Where <uppercase atpha> is defined as o single ASCII tnto:dia-iyrt in the
range 41 - 5A (65 - 90 decimal).

Where (_) represents an "undencore", a single ASCII-encoded byte with the
value 5F (95 decimal).

Figure A-21

< response data) . The < response data > element represents the
various types of data which the instrument may return. These tlpes
include: < character response data >, < nr1 numeric response data >,
< nr3 numeric response data >, < string response data >, < definite
length arbitrary block response data), ild < arbitrary ASCII response
data >.

Figure A-22. < character response data >

Message Communication and System Functions
A-23

(upp e r
cose o I pho)

<upper
cose o I pho)

<digit>

Where < response mnemonic> is defined as

<upper
case alpha>

<upper
case alpha>

<digi t>

54120/BL62

Where < uppercase alpha> is defined as a single ASCII encoded byte in the
range 41- SA (65 - 90 decimal).

Where (_) represents an "underscore'~ a single ASCII-encoded byte with the
value 5F (95 decimal).

Figure A-21. < response message unit> (Continued)

< response data>. The < response data> element represents the
various types of data which the instrument may return. These types
include: < character response data>, < nrl numeric response data> ,
< nr3 numeric response data>, < string response data>, < defmite
length arbitrary block response data> , and < arbitrary ASCII response
data>.

.. <response
mnemonic>

54120/BL63

HP 16528/16538
Programming Reference

Figure A-22. < character response data>

Message Communication and System Functions
A-23

<digit>

Figure A-23. < nrl numeric response data >

< string response data >Figure A-25.

Message Communication and System Functions
A-24

HP 16s28/16538
Programming Reference

<digit> <digit>

<digit>

Figure A-24. < nr3 numeric response data >

< i nser ted")

(non-doub I e

quote chor)

r
•

~I

<digit>

54120/8L64

Figure A-23. < nr1 numeric response data>

<digit> <digit>

)------"........ <d i 9 i t> LL
_I~

~IZ0/BL65

Figure A-24. < nr3 numeric response data >

<inserted">

<non-double
quote char>

54120/BL66

Figure A-25. < string response data>

Message Communication and System.Functions
A-24

~p 16528/16538
Programming Reference

<non-zero
digit> <digit> <8-b i t

doto byte>

HP 16s28/16538
Programming Reference

Figure A-26.

54120/9167

block response data >

Where <ASCII dato byte> represents ony Ascn-encoded data byte except
< Nl, > (0A, 10 decimal)"

Notes

L. The END message provides an unambiguous termination to an
element that contains arbitrarry ASCII characters.

2. The IEEE 488.L END message serves the dual function of
terminating this element as well as terminating the < RESPONSE
MESSAGE > . It is only sent once with the last byte of the indefinite
block data. The NL is present for consistency with the
< RESPONSE MESSAGE TERMINATOR >. Indefinite block
data format is not supported in the HP 16528,116538.

Figure A-27. < arbitrary ASCII response data >

Message Communication and System Functions
A-25

< definite length arbitrary

<ASCI I
doto byte>

..
1

..::

<non-zero - I - <8-bit -digi t> -I <d i 9 it> - data byte>
...

~

54120/BL67

Figure A-26. < definite length arbitrary block response data >

'" ~ '--__<_A_SC_I_I_:-"'--..,..----II~..fNL\----~_ data byte> / ~~

5~'20/8L68

Where <ASCII data byte> represents any ASCII-encoded data byte except
<NL> (OA,lOdecima/).

Notes

1. The END message provides an unambiguous termination to an
element that contains arbitrary ASCII characters.

2. The IEEE 488.1 END message serves the dual function of
terminating this element as well as terminating the < RESPONSE
MESSAGE>. It is only sent once with the last byte of the indefmite
block data. The NL is present for consistency with the
< RESPONSE MESSAGE TERMINATOR>. Indefmite block
data format is not supported in the HP 1652B/1653B.

Figure A-27. < arbitrary ASCII response data>

HP 16528/16538
Programming Reference

Message Communication and System Functions
A-25

< rcsponse data separator) . A comma sepiuates multiple pieces of
response data within a single < response message unit > .

Figure A-28. < response data separator>

< response header separator). A space (ASCII decimal3z) delimils the
response header, if returned, from the first or only piece of data.

Figure A-29. < response header separator >

< rcsponse message unit separator) . A semicolon delimits the
< response message unit > s if multiple responses are returned.

Figure A-30. < response message unit separator >

< response message terminator) . A < response message terminator >
(NI-) lelminates a complete < response message > . It should be read
from the instrument along with the response itself.

Message Communication and System Functions
A-26

HP 16s2Bl16538
Programming Reference

< response data separator>. A comma separates multiple pieces of
response data within a single < response message unit > .

54120/BL69

Figure A-28. < response data separator>

< response header separator>. A space (ASCII decimal 32) delimits the
response header, if returned, from the fIrst or only piece of data.

541Z0/BL70

Figure A-29. < response header separator>

< response message unit separator>. A semicolon delimits the
< response message unit> s if multiple responses are returned.

54 120/BL71

Figure A-30. < response message unit separator>

< response message terminator>. A < response message terminator>
(NL) terminates a complete < response message>. It should be read
from the instrument along with the response itself.

Message Communication and System Functions
A-26

HP 16528/16538
Programming Reference

Common
Commands

HP 16528/16s3B
Programming Reference

IEEE 488.2 defines a set of common commands. These comm4ldg
perform functions which are common to any rype of instrument. They can

therefore be implemented in a standard way asross a wide variery of
a ' a ^

^
r. a

'

instrumentation. All the common commands of IEEE 488.2 beglo with an
asterisk. There is one key difference between the IEEE 488.2 common
commands and the rest of the commands found in this instrument. The
IEEE 488.2 common commands do not affect the parser's position within
the command tree. More information about the command tree and tree
traversal can be found in the Programming and Documentation
Conventions chapter.

Table A-3. HP 1652B.1538's Common Commands

Command Command Name

Clear Status Command
Event Status Enable Command
Event Status Enable Query
Event Status Register Query
Identification Query
Operation Complete Command
Operation Complete Query
Reset (not implemented on HP L6528116538)
Service Request Enable Command
Service Request Enable Query
Read Status Byte Query
Wait-to-Continue Comm and

*CL.S

*ESE
*ESE?
*ESR?
*IDN?
*OPC
*OPC?
*RST
*SRE
*SRE?
*STB?
*WAI

Message Communication and System Functions
A-27

Common
Commands

HP 16528/16538
Programming Reference

IEEE 488.2 defmes a set of common commands. These commands
perform functions which are common to any type of instrument. They can
therefor,e be implemented in a standard way across a wide variety of
instrumentation. All the common commands of IEEE 488.2 begin with an
asterisk. There is one key difference between the IEEE 488.2 common
commands and the rest of the commands found in this instrument. The
IEEE 488.2 common commands do not affect the parser's position within
the command tree. More information about the command tree and tree
traversal can be found in the Programming and Documentation
Conventions chapter.

Table A-3. HP 16528/538's Common Commands

Command Command Name

*CLS Clear Status Command
*ESE Event Status Enable Command
*ESE? Event Status Enable Query
*ESR? Event Status Register Query
*IDN? Identification Query
*OPC Operation Complete Command
*OPC? Operation Complete Query
*RST Reset (not implemented on HP 1652B/1653B)
*SRE Service Request Enable Command
*SRE? Service Request Enable Query
*STB? Read Status Byte Query
*WAI Wait-to-Continue Command

Message Communication and System Functions
A-27

ID
I

a+q,
+c
Q

fto
ict
o
+.
I
J

GI

OJ

en...
m...
c:
en
::D
<D

"'Coa
~

(Q

Status Reporting

Introduction

HP 1652F./16s38
Programming Reference

The status reporting feature available over the bus is the serial poll. IEEE
488.2 defines data structures, corlmands, and common bit definitions.
There are also instrument defined structures and bits.

The bits in the status byte act as summary bits for the data structures
residing behind them. In the case of queues, the summary bit is set if the
queue is not empty. For registers, the summary bit is set if any enabled bit
in the event register is set. The events are enabled via the corresponding
event enable register. Events captured by an event register remain set

until the register is read or cleared. Registers are read with their
associated commands. The ,*CIJ" command clears all event registers
and all queues except the output queue. If "*CIS" is sent immediately

following a < program messags [slminator > , the output queue will also
be cleared.

Status Reporting
B-1

Status Reporting B

Introduction

HP 1652B/1653B
Programming Reference

The status reporting feature available over the bus is the serial poll. IEEE
488.2 defmes data structures, commands, and common bit defInitions.
There are also instrument defmed structures and bits.

The bits in the status byte act as summary bits for the data structures
residing behind them. In the case of queues, the summary bit is set if the
queue is not empty. For registers, the summary bit is set if any enabled bit
in the event register is set. The events are enabled via the corresponding
event enable register. Events captured by an event register remain set
until the register is read or cleared. Registers are read with their
associated commands. The "*CLS" command clears all event registers
and all queues except the output queue. If "*CLS" is sent immediately
following a < program message terminator> , the output queue will also
be cleared.

Status Reporting
B-1

EVENT REGISTER
(MESR)

ENABLE
RTG I STER
(MESE)

SERVICE
RIOUEST
ENABLE
REG I STER
(*SRE)

Figure B-1. Status Byte Structures and Concepts

lm

Status Reporting
B-2

HP 1652B.,/16s38
Programming Reference

[[}]]]]
[[}]]]]

LOGICAL OR

EVENT REGISTER
(MESR)

ENABLE
REGISTER
(MESE)

~2L EVENTREGISTERS
(ESR)

NOTE: URO AND ROC NOT IMPLEMENTED

DOJIIJJ

ENABLE
REGISTERS
(ESE)

QUEUES:
o-OUTPUT
M-MESSAGE

STATUS
BYTE
(.ST8)

SERVICE
REQUEST
ENABLE
REGISTER
(*SRE)

16500802

Status Reporting
B-2

Figure B-1. Status Byte Structures and Concepts

HP 16528/1653B
Programming Reference

Event Status Register The Event Status Register is a 488.2 defined register. fte !i15 i1 this
register are "latched." That is, once an event happens which sets a bit, that
bit will only be cleared if the rcgister is read.

Service Request The Service Request Enable Register is an 8-bit register. Each bit enables
Enable Register the corresponding bit in the status byte to cause a slrvice request. The

sixth bit does not logrcally exist and is always returned as a zero. To read
and write to this register use the *SRE? and *SRE co'nmands.

Bit Definitions The following m"emonics are used in hgure B-1 and in the nComnon

Commandsn chapter:

MAV- message available. Indicates whether there is a response in the
output queue.

ESB - event status bit. Indicates if any of the conditions in the Standard
Event Status Register are set and enabled.

MSS - master summar? status. Indicates whether the device has a reason
for requesting service. This bit is returned for the *STB? query.

RQS - request selvice. Indicates if the device is requesting service. This
bit is returned during a serial poll. RQS will be set to 0 after being read
via a serial poll (MSS is not reset by *STB?).

MSG - message. Indicates whether there is a message in the message
queue (Not implemented in the HP L65?3/t6538).

PON - power on. Indicates power has been turned on.

URQ - user rrquest. Alwap 0 on the HP 16528/16538.

CME - command eror. Indicates whether the parser detected art error.

Note*$I1"rr"";:T"*';:fl::t#r"'.Tr'"Yi'f"ff;?"",3i,i1lQYErcanbe

query :SYSTEM:ERROR?.

HP 16528/16s38
Programming Relerence

Status Reporting
B-3

Event Status Register

Service Request
Enable Register

Bit Definitions

The Event Status Register is a 488.2 defined register. The bits in this
register are "latched." That is, once an event happens which sets a bit, that
bit will only be cleared if the register is read.

The Service Request Enable Register is an 8-bit register. Each bit enables
the corresponding bit in the status byte to cause a service request. The
sixth bit does not logically exist and is always returned as a zero. To read
and write to this register use the *SRE? and *SRE commands.

The following mnemonics are used in figure B-1 and in the "Common
Commands" chapter:

MAV • message available. Indicates whether there is a response in the
output queue.

ESB • event status bit. Indicates if any of the conditions in the Standard
Event Status Register are set and enabled.

MSS • master summary status. Indicates whether the device has a reason
for requesting service. This bit is returned for the *STB? query.

RQS • request senice. Indicates if the device is requesting service. This
bit is returned during a serial poll. RQS will be set to 0 after being read
via a serial poll (MSS is not reset by *STB?).

MSG • message. Indicates whether there is a message in the message
queue (Not implemented in the HP 1652B/1653B).

PON • power on. Indicates power has been turned on.

URQ • user request. Always 0 on the HP 1652B/1653B.

CME • command error. Indicates whether the parser detected an error.

I
Note "" The error numbers and/or strings for CME, EXE, DOE, and QYE can be

read from a device defmed queue (which is not part of 488.2) with the
query :SYSTEM:ERROR?

HP 16528/16538
Programming Reference

Status Reporting
B-3

E)(E - execution enor. Indicates whether a parameter was out of rattge,
or inconsistent with current settings.

DDE - device specific error. Indicates whether the device was unable to
complete an operation for device dependent reasons.

QYE - query error. Indicates whether the protocol for queries has been
violated.

RQC - rcquest control. Always 0 on the HP 16528/16538.

OPC - operation complete. Indicates whether the device has completed
all pending operations. OPC is controlled by the *OPC common
command. Because this command can appear after any other command
it serves as a general purpose operation complete message generator.

LCL - rcmote to local. Indicates whether a remote to local transition has
occurred.

MSB - module summary bit. Indicates that an enable event in one of the
modules Status reeisters has occurred.

Key FeatureS A few of the most important features of Status Reporting are listed in the
following paragraphs.

Operation Complete. The IEEE 4€18.2 structure provides one lsghnique
which can be used to find out if aoy operation is finished. The *OPC

command, when sent to the instrument after the operation of interest, will
set the OPC bit in the Standard Event Status Register. If the OPC bit and
the RQS bit have been enabled a service request will be generated. The
commands which affect the OPC bit are the overlapped co-mands.

OUTPUT XIC{;'*SRE 32 ; *ESE 1" lenables an OPC service request

Status Reporting
B-4

HP 1652B./16s38
Programming Reference

EXE • execution error. Indicates whether a parameter was out of range,
or inconsistent with current settings.

DDE • device specific error. Indicates whether the device was unable to
complete an operation for device dependent reasons.

QYE • query error. Indicates whether the protocol for queries has been
violated.

RQC • request control. Always 0 on the HP 1652B/1653B.

OPC • operation complete. Indicates whether the device has completed
all pending operations. OPC is controlled by the *OPC common
command. Because this command can appear after any other command,
it serves as a general purpose operation complete message generator.

LCL - remote to local. Indicates whether a remote to local transition has
occurred.

MSB • module summary bit. Indicates that an enable event in one of the
modules Status registers has occurred.

Key Features A few of the most important features of Status Reporting are listed in the
following paragraphs.

Operation Complete. The IEEE 488.2 structure provides one technique
which can be used to fmd out if any operation is fmished. The *OPC
command, when sent to the instrument after the operation of interest, will
set the ope bit in the Standard Event Status Register. If the OPC bit and
the RQS bit have been enabled a service request will be generated. The
commands which affect the OPC bit are the overlapped commands.

OUTPUT XXX;"*SRE 32 ; *ESE 111 !enables an ope service request

Status Reporting
8-4

HP 16528/16538
Programming Reference

Status Byte. The Status Byte contains the basic status information which
is sent over the bus in a serial poll. If the device is requestirg service
(ROS set), qpd the controller serial polls the device, the RQS bit is
cleared. The MSS (Master Summary Status) bit (read with *STB?) aod
other bits of the Status Byte are not be cleared by reading them. Only the
RQS bit is cleared when read.

The Status Byte is cleared with the *CI-S common @mmand.

) +- READ By SERTAL poLL
I

I

I srerus BYIE REGISTER

I

)
* READ BY rSrB?

SERVICE REOUEST

ENABLE REGISTER
rSRE <NRf>

r SRE?

Figure B-2. Service Request Enabling

HP 1652B.,/16s38
Programming Reference

Status Reporting
B-5

STATUS SUMMARY MTSSAGES

Status Byte. The Status Byte contains the basic status information which
is sent over the bus in a serial poll. If the device is requesting service
(RQS set), a.nd the controller serial polls the device, the RQS bit is
cleared. The MSS (Master Summary Status) bit (read with *STB?) and
other bits of the Status Byte are not be cleared by reading them. Only the
RQS bit is cleared when read.

The Status Byte is cleared with the *CLS common command.

r- ST ATUS SUMMARY MESSAGES~

~ READ BY SERIAL POLL

STATUS BYTE REGISTER

~ READ BY .STB?

HP 16528/16538
Programming Reference

~--+---+--l &
a::
o

~---+---+---+~ &

~----4----+----1--+---1&

~---+---+---+-~-+--!&

~---+---+---+-+---+---+-----I &

SERVICE REQUEST
ENABLE REGISTER

.SRE <NRf>
.SRE?

'6~/BL2"

Figure 8-2. Service Request Enabling

Status Reporting
8-5

Serial Poll The HP L652811653B supports the IEEE 488.1 serial poll feature. When
a serial poll of the instrument is requested, the RQS bit is returned on bit
6 of the status byte.

Using Serial Poll This example will show how to use the service request by conducting a

(HP-|B) serial poll of all instruments on the HP-IB bus. In this example, assume

that there are two instruments on the bus; a Logic Analpr at address 7

and a printer at address 1.

The program ssmm&rd for serial poll using HP BASIC 4.0 is Stat -
SPOLL(707). The addressT0T is the address of the oscilloscope in the

this example. The command for checking the printer is Stat :
SPOLL(701) because the address of that instrument is 0L on bus address

1. This command reads the contents of the HP-IB Status Register into the
variable called Stat. At that time bit 0 of the variable Stat can be tested to
see if it is set (bit 6 - 1).

The serial poil operation can be conducted in the following manner:

L. Enable interrupts on the bus. This allows the controller to "see" the

SRe line.

2. Disable interrupts on the bus.

3. If the SRQ line is high (some instrument is requesting service) then
check the instrument at address L to see if bit 6 of its status register
is high.

Status Reporting
B-6

HP 1652B./16s38
Programming Reference

Serial Poll

Using Serial Poll
(HP-18)

Status Reporting
8-6

The HP 1652B/1653B supports the IEEE 488.1 serial poll feature. When
a serial poll of the instrument is requested, the RQS bit is returned on bit
6 of the status byte.

This example will show how to use the service request by conducting a
serial poll of all instruments on the HP-IB bus. In this example, assume
that there are two instruments on the bus; a Logic Analyzer at address 7
and a printer at address 1.

The program command for serial poll using HP BASIC 4.0 is Stat =

SPOLL(707). The address 707 is the address of the oscilloscope in the
this example. The command for checking the printer is Stat =

SPOLL(701) because the address of that instrument is 01 on bus address
7. This command reads the contents of the HP-IB Status Register into the
variable called Stat. At that time bit 6 of the variable Stat can be tested to
see if it is set (bit 6 = 1).

The serial poll operation can be conducted in the following manner:

1. Enable interrupts on the bus. This allows the controller to "see" the
SRQ line.

2. Disable interrupts on the bus.

3. If the SRQ line is high (some instrument is requesting service) then
check the instrument at address 1 to see if bit 6 of its status register
is high.

HP 16528/16538
Programming Reference

HP 16528/16s38
Programming Relerence

4. To check whether bit 6 of an instruments status register i5 high, use
the followiag Basic statement:

lF BIT (Stat,6) THEN

5. If bit 6 of the instnrment at address 1 is not high, then check the
is56rrment at address 7 to see if bit 6 of its status register is high.

6. As soon as the instrument with status bit 6 higb is found check the
rest of the status bits to determine what is required.

The SPOLL(707) command causes much more to happen on the bus than
simply readitg the register. This command clears the bus automatically,
addresses the talker and listener, sends SPE (serial poll enable) aod SPD
(serial poll disable) bus commands, and reads the data. For more
information about serial po[, refer to your controller manual, ild
progra m m in g langu age reference manuals.

After the serial poll is completed the RQS bit in the HP 16528,116538
Status Byte Register will be reset if it was set. Once a bit in the Status
Byte Register is set, it will remain set until the status is cleared with a
*CI..S command, or the instrument is reset.

Status Reporting
B-7

HP 16528/16538
Programming Reference

4. To check whether bit 6 of an instruments status register is high, use
the following Basic statement:

IF BIT (Stat, 6) THEN

5. If bit 6 of the instrument at address 1 is not high, then check the
instrument at address 7 to see if bit 6 of its status register is high.

6. As soon as the instrument with status bit 6 high is found check the
rest of the status bits to determine what is required.

The SPOLL(707) command causes much more to happen on the bus than
simply reading the register. This command clears the bus automatically,
addresses the talker and listener, sends SPE (serial poll enable) and SPD
(serial poll disable) bus commands, and reads the data. For more
information about serial poll, refer to your controller manual, and
programming language reference manuals.

After the serial poll is completed, the RQS bit in the HP 1652B/1653B
Status Byte Register will be reset if it was set. Once a bit in the Status
Byte Register is set, it will remain set until the status is cleared with a
*CLS command, or the instrument is reset.

Status Reporting
B-7

o
I

m--o-
3
oooqt
GI
oo

r

Error Messages

Device
Dependent
Errors

HP 16528/16s3B
Programming Reference

This section @vers the error messages that relate to the HP L652B153B
I.ogc Aoalyzers.

zffi Label not found

?nL Pattern string invalid

202 Qualifier invalid

203 Data not available

300 RS-232C error

Enor Messages
c-1

Error Messages c
This section covers the error messages that relate to the HP 1652B/53B
Logic Analyzers.

Device 200 Label not found

Dependent
Pattern string invalidErrors 201

202 Qualifier invalid

203 Data not available

300 RS-232C error

HP 16528/16538
Programming Reference

Error Messages
C-1

COmmand -1(X) Command error (unknown command)(generic error)

Errors
-10L Invalid character received

-110 Command header error

_llL Header delimiter error

-120 Numeric argument error

-121 Wrong data type (numeric expected)

-123 Nrrmeric overflow

-L29 Missing numeric argument

-130 Non numeric argument error (character,string, or block)

-131 Wrong data tlpe (character expected)

-I32 Wrong data tlpe (string expected)

-L33 Wrong data tlpe (block type #D required)

-lY Data overflow (string or block too long)

-L39 Missing non numeric argument

-L42 Too many arguments

-L43 Atgument delimiter error

-LM Invalid message unit delimiter

Error Messages
c-2

HP 16528/16538
Programming Reference

Command
Errors

Error Messages
C-2

-100 Command error (unknown command)(generic error)

-101 Invalid character received

-110 Command header error

-111 Header delimiter error

-120 Numeric argument error

-121 Wrong data type (numeric expected)

-123 Numeric overflow

-129 Missing numeric argument

-130 Nonnumeric argument error (character,string, or block)

-131 Wrong data type (character expected)

-132 Wrong data type (string expected)

-133 Wrong data type (block type #D required)

-134 Data overflow (string or block too long)

-139 Missing non numeric argument

-142 Too many arguments

-143 Argument delimiter error

-144 Invalid message unit delimiter

HP 16528/16538
Programming Reference

EXgCUtiOn -?ffi No Can Do (generic execution error)

Errors
-20L Not executable in Local Mode

-202 Settings lost due to return-to-local or power on

-203 Trigger ignored

-zIL L*gal command, but settings conflict

-zLZ Argument out of range

-22L Busy doing something else

-222 Insufficient capability or configuration

-232 Output buffer full or overflow

-24A Mass Memory error (generic)

-24L Mass storage device not present

-242 No media

-243 Bad media

-24 Mediatull

-245 Directory full

-2# File name not found

-247 Duplicate file name

-24f^ Media protected

HP 16528116538
Programming Reference

Enor Messages
c-3

Execution
Errors

HP 16528/16538
Programming Reference

-200 No Can Do (generic execution error)

-201 Not executable in Local Mode

-202 Settings lost due to return-to-Iocal or power on

-203 Trigger ignored

-211 Legal command, but settings conflict

-212 Argument out of range

-221 Busy doing something else

-222 Insufficient capability or configuration

-232 Output buffer full or overflow

-240 Mass Memory error (generic)

-241 Mass storage device not present

-242 No media

-243 Bad media

-244 Media full

-245 Directory full

-246 File name not found

-247 Duplicate fue name

-248 Media protected

Error Messages
C-3

lntgfnal EffOfS -300 Device Failure (generic hardw:ue error)

-301 Interrupt fault

-302 System Error

-303 Time out

-310 RAM error

-311 RAM failure (hardware error)

-3LZ RAM data loss (sofnvare error)

-3L3 Calibration data loss

4?n ROM error

-32L ROM checksum

-322 Hardware and Firmware incompatible

-330 Power on test tailed

-3A0 Self Test failed

-350 Too Many Errors (Error queue overflow)

Enor Messages
C-4

HP 16528,./16538
Programming Reference

Internal Errors

Error Messages
C-4

-300 Device Failure (generic hardware error)

-301 Interrupt fault

-302 System Error

-303 Time out

-310 RAM error

-311 RAM failure (hardware error)

-312 RAM data loss (software error)

-313 Calibration data loss

-320 ROM error

-321 ROM checksum

-322 Hardware and Firmware incompatible

-330 Power on test failed

-340 Self Test failed

-350 Too Many Errors (Error queue overflow)

HP 16528/16538
Programming Reference

Query Errofs -400 eueryError (generic)

-410 QUeTINTERRUPTED

-420 QueTUNTERMINATED

-421 Qrcry received. Indefinite block response in progress

-422 Addressed to Tdk,]rfslhing to Sa]

-430 QueTDEADLOCKED

HP 16528/16s38
Programming Reference

Enor Messages
c-5

Query Errors

HP 16528/16538
Programming Reference

-400 Query Error (generic)

-410 Query INTERRUPTED

-420 Query UNTERMINATED

-421 Query received. Indefmite block response in progress

-422 Addressed to Talk, Nothing to Say

-430 Query DEADLOCKED

Error Messages
C-5

5
CL
ox

t-

-:::J
Q.
CD
><

lndex

*CI-S command
*ESE comtttand
*ESR command
*IDN command
*OPC command
*RST commnsd
*SRE command
*STB com*and
*WAI command
... 4-3
32767 4-2
9.9E +37 4-2
:: - +3

4-3

t1 4-3

{} 4-3

| 4-3

A

ACCumulate command/query L+4, f-4,19-6
Acquisition data 6-11
Addressed talMisten mode 2-1,

ALL 27-5
AMODe commandlquery 18-4
Analyzer 1 Data Information 6-9
Analyzer 2 Data Information 6-11
Angular brackets 4-3
Arguments l-4
ARM command/query 10-4, 2L-4
ARMBnc command 6-4
ASCII Format 26-5

HP 16528/16s28
Programming Relerence

ASSigncommand/query 10-5
AUToload command/query 7-4
AUToscale 2L-5
AUToscale commsld 10-6
Average Mode 24-2,26-3

B

BASE command 20-4
Bases 1-8

BASIC T-2

Baud rate 3-5
Bit definitions B-3
Block data t-3, L-I6,6-6
Block length specifier 6-6
Block length specifier 6-7, 6-37
Braces +3
BRANch command/query L2-5 - L2-7
BYTE Format 26-4

C

Cable
RS-232C 3-2

CATalog query l-5
chart display 15-1

Clear To Send (CTS) 3-4
CLOCk command/query LI-4
CMAskcommand/query L6-4
CME B-3
COLumn command/query 8-3, L3-6 - L3-7

5-3
5-4
5-6
5-8
5-9
5-10
5-1-1

5-13
5-15

Index-1

Index

*CLS command 5-3
*ESE command 5-4
*ESR command 5-6
*IDN command 5-8
*OPC command 5-9
*RST command 5-10
*SRE command 5-11
*STB command 5-13
*WAI command 5-15
... 4-3
32767 4-2
9.9E+37 4-2
::= 4-3

4-3
[] 4-3
{} 4-3
I 4-3

A

ACCumulate command/query 14-4, 15-4, 19-6
Acquisition data 6-11
Addressed talkllisten mode 2-1
ALL 27-5
AMODe command/query 18-4
Analyzer 1 Data Information 6-9
Analyzer 2 Data Information 6-11
Angular brackets 4-3
Arguments 1-4
ARM command/query 10-4,21-4
ARMBnc command 6-4
ASCII Format 26-5

HP 16528/16528
Programming Reference

ASSign command/query 10-5
AUToload command/query 7-4
AUTosca1e 21-5
AUToscale command 10-6
Average Mode 24-2,26-3

B

BASE command 20-4
Bases 1-8
BASIC 1-2
Baud rate 3-5
Bit definitions B-3
Block data 1-3, 1-16,6-6
Block length specifier 6-6
Block length specifier 6-7, 6-37
Braces 4-3
BRANch command/query 12-5 - 12-7
BYTE Format 26-4

c

Cable
RS-232C 3-2

CATalog query 7-5
chart display 15-1
Clear To Send (CTS) 3-4
CLOCk command/query 11-4
CMASk command/query 16-4
CME B-3
COLumn command/query 8-3, 13-6 - 13-7

Index-1

Combining com-ands L-5
Comma L-7

Command t-3,1-13
*cls 5-3
*ESE 5-4
*oPC 5-9
*RST 5-10
*sRE 5-11
*wAI 5-15
ACCumulate L+4, f-4, L9-6
AMODe 18-4

ARM L0-4,2t-4
ARMBnc 6-4
ASSign 10-5
AUToload 7-4
AUToscale L0-6, 2L-5
BASE 2A-4

BRANch L2-5
CLOCK TL-4
CMASK L6-4
COLumn 8-3, L3-6
COMPare L6-3
CONFig 7-9,7-14
coPY'7-6,16-5
couNt 2+4
COUPling 22-4
CPERiod 11-5
DATA 6-5, L6-6
DELay L4-5,19-7,25-3
DOWNload 7-7
DSP 6-?N

DURation 18-5

EDGE 18-6

FIND L2-8
FORMat 26-L0
GLITch 18-8

FLAXis 15-5

HEADeT L-L2,6-22
IASSembler 7-L0
IMTialize 7-8
INSert L4-6, L9-8

Index-2

Command (continued)
KEY 6-23
LABeI 11-6, I7-3
LEVeI 23-4
LINE g-5, 13-g
LOAD:CONFig 7-9
LOAD:IASSembler 7-L0
LOCKout 3-7,6-26
LONGform \-12,6-27
MACHine L0-3

MASTeT 11-8

MENU 6-28
MESE 6-29
MMODe 13-10, L9-9
MODE 23-5,25-4
NAME LO-7

OcoNdition 19-10

OFFSet 22-5
OPATtern L3-1"1,, 19-1,1

OSEarch L3-13, I9-I3
OTAG 13-15

OTIMe 9-5, L9-L4
PACK 7-LL

PATTern 1.8-9, 20-5
PREstore L2-L0
PRINT 6-Y
PROBe 22-7
PURGe 7-Lz
RANGe L2-L2, L4-7, L6-9, 19-15, 20-6, 22-8, 25-6
RECord 26-L3

REMove LL-g,1"+8, L7-5, L9-L6, ?n-7

REName 7-L3
RESTart 12-14

RMODe 6-35
Run Control 6-L
RUNTiI L3-16, L6-L0, L9-L7

SCHart 15-3

SEQuence L2-I6
SETUp 6-%
SFORmat 11-3

SLAVe 11-10

HP 16528.116528
Programming Relerence

Combining commands 1-5
Comma 1-7
Command 1-3, 1-13

*CLS 5-3
*ESE 5-4
*OPC 5-9
*RST 5-10
*SRE 5-11
*WAI 5-15
ACCumulate 14-4, 15-4, 19-6
AMODe 18-4
ARM 10-4,21-4
ARMBnc 6-4
ASSign 10-5
AUToload 7-4
AUToscale 10-6,21-5
BASE 20-4
BRANch 12-5
CLOCk 11-4
CMASk 16-4
COLumn 8-3,13-6
COMPare 16-3
CONFig 7-9, 7-14
COPY 7-6,16-5
COUNt 24-4
COUPling 22-4
CPERiod 11-5
DATA 6-5,16-6
DELay 14-5,19-7,25-3
DOWNload 7-7
DSP 6-20
DURation 18-5
EDGE 18-6
FIND 12-8
FORMat 26-10
GLITch 18-8
HAXis 15-5
HEADer 1-12,6-22
IASSembler 7-10
INITialize 7-8
INSert 14-6, 19-8

Index-2

Command (continued)
KEY 6-23
LABel 11-6,17-3
LEVel 23-4
LINE 8-5,13-9
LOAD:CONFig 7-9
LOAD:IASSembler 7-10
LOCKout 3-7, 6-26
LONGform 1-12, 6-27
MACHine 10-3
MASTer 11-8
MENU 6-28
MESE 6-29
MMODe 13-10,19-9
MODE 23-5, 25-4
NAME 10-7
OCONdition 19-10
OFFSet 22-5
OPATtern 13-11,19-11
OSEarch 13-13, 19-13
OTAG 13-15
OTIMe 9-5, 19-14
PACK 7-11
PATTern 18-9,20-5
PREstore 12-10
PRINt 6-34
PROBe 22-7
PURGe 7-12
RANGe 12-12,14-7, 16-9, 19-15,20-6,22-8,25-6
RECord 26-13
REMove 11-9,14-8,17-5,19-16,20-7
REName 7-13
RESTart 12-14
RMODe 6-35
Run Control 6-1
RUNTil 13-16, 16-10, 19-17
SCHart 15-3
SEQuence 12-16
SETup 6-36
SFORmat 11-3
SLAVe 11-10

HP 16528/16528
Programming Reference

Command (continued)
SLIST 13-5

SLOPe ?3-6
SMODe 2L-6
SOURce 23-7, 25-L4, 27 -L4
START 6-38
sToP 6-39
STORe L2-L7
STORe:CONFig 7-I4
STRace I2-4
SWAVeform 1+3
SYMBoI 20-3
SYSIem:DATA 6-5
SYStem:SETup 6-%
TAG 12-L9
TERM L2.2L
TFORmat L7-2
THReshold L1-1L, 17-6
TTRace t8-3
TWAVeform 19-5
TYPE 1_0-9,24-5

VAXis L5-7
wrDTh 20-8
wLISr 9-2
XcoNdition 19-24
XPATtern L3-23, L9-26
XSEarch L3-25, L9-28
XTAG L3-27
XTIMe 9-6, L9-29

Command errors C-2
Command mode 2-L
Command set organization +L0
Command structure 1-11

Command tree +4
Command types 4-4
Common commands 1-5, $4,5-1, A-27
Communication 1-2
COMPare selector L6-3
COMPare Subsystem L5-1

Complex qualifier L2-7

Compound commands I-4

HP 16s28/16s28
Programming Reference

CONFig command 7 -9, 7 -L4
Configuration file 1-10 - 1-11
Controller mode 2-L

Controllers 1-2
Conventions 4-3
COPY command J-6,16-5
couNt 24-4
COUNT query 26-8
COUPling 22-4
CPERiod command/query 11-5

D

DATA 6-5,26-9
command 6-5

State (no tags) 6-Lz
State (with either time or state tags) 6-Lz
Timing Glitch 6-14
Transitional Timing 6-L5

Dara bits 3-5 - 3-6

8-Bit mode 3-6
Data block

Acquisition data 6-LL
Aoalper L data 6-9
Analyzer 2 data 6-IL
Data preamble 6-8
Section data 6-8
Section header 6-8

Data Carrier Detect (DCD) 3-4
DATA command/query 6-5 - 6-L9,I6-6 - L6-7
Data Communications Equipment 3-L
Data mode 2-I
Data preamble 6-8
DATA query 13-8
Data Set Ready (DSR) 3-4
Data Terminal Equipment 3-1
Data Terminal Ready (DTR) 3-3
DCE 3-L
DCL 2-3
DDE B-4

Index-3

Command (continued)
SLISt 13-5
SLOPe 23-6
SMODe 21-6
SOURce 23-7,26-14,27-14
STARt 6-38
STOP 6-39
STORe 12-17
STORe:CONFig 7-14
STRace 12-4
SWAVeform 14-3
SYMBol 20-3
SYStem:DATA 6-5
SYStem:SETup 6-36
TAG 12-19
TERM 12-21
TFORmat 17-2
THReshold 11-11,17-6
TTRace 18-3
TWAVeform 19-5
TYPE 10-8, 24-5
VAXis 15-7
WIDTh 20-8
WLISt 9-2
XCONdition 19-24
XPATtern 13-23,19-26
XSEarch' 13-25, 19-28
XTAG 13-27
XTIMe 9-6,19-29

Command errors C-2
Command mode 2-1
Command set organization 4-10
Command structure 1-11
Command tree 4-4
Command types 4-4
Common commands 1-5,4-4,5-1, A-27
Communication 1-2
COMPare selector 16-3
COMPare Subsystem 16-1
Complex qualifier 12-7
Compound commands 1-4

HP 16528/16528
Programming Reference

CONFig command 7-9, 7-14
Configuration rue 1-10 - 1-11
Controller mode 2-1
Controllers 1-2
Conventions 4-3
COpy command 7-6,16-5
COUNt 24-4
COUNt query 26-8
COUPling 22-4
CPERiod command/query 11-5

D

DATA 6-5,26-9
command 6-5
State (no tags) 6-12
State (with either time or state tags) 6-12
Timing Glitch 6-14
Transitional Timing 6-15

Data bits 3-5 - 3-6
8-Bit mode 3-6

Data block
Acquisition data 6-11
Analyzer 1 data 6-9
Analyzer 2 data 6-11
Data preamble 6-8
Section data 6-8
Section header 6-8

Data Carrier Detect (DCD) 3-4
DATA command/query 6-5 - 6-19,16-6 - 16-7
Data Communications Equipment 3-1
Data mode 2-1
Data preamble 6-8
DATA query 13-8
Data Set Ready (DSR) 3-4
Data Terminal Equipment 3-1
Data Terminal Ready (DTR) 3-3
DCE 3-1
DCL 2-3
DDE B-4

Index-3

Definite-length block response data L-L6
Definitions +3
DELay 25-3
DELay command/query L+5, L9-7
Device address 1-3

HP-IB 2-2
RS-232C 3-6

Device clear 2-3
Device dependent errors C-l
DLIST

Command 8-2
DLIST selector 8-2
DLIST Subsystem 8-1
Documentation conventions 4-3
DOWNload command 7-7
DSP command 6-20
DTE 3-1
Duplicate keyvords 1-5
DURationcommand/query 18-5

E

EDGE command/query 18-6 - 18-7
EDGE Trigger Mode ?3-I
Ellipsis 4-3
Embedded strings L-2 - L-3
Enter statement L-2
Error messages C-1
ERRor query 6-2L
ESB B-3
Event Status Register B-3
EXE B-4
Execution errors C-3
Exponents 1-8
Extended interface 3-3

Index-4

F

FALLtime 27-6
FIND command/query L2-8 - L2-9
FIND query L6-8
FORMat ?6-L0
Fractional values 1-8
FREQuency 27-7

G

GET 2-3
GllTchcommand/query 18-8
Glitch Timing Dara 6-L4
Group execute trigger 2-3

H

HAXis command/query 15-5 - 15-6
HEADeT command L-Lz
HEADeT command/query 6-22
Headers L-3 - 1,-4, L-7
Host language 1-3
HP-IB 2-L, 8-6
HP-IB address 2-L
I{P-IB device address 2-2
HP-IB interface 2-L
HP-IB interface code 2-2
HP-IB interface functions 2-L

I

IASSembler command 7-L0
IEEE 489.1, 2-L, A-1

HP 16s28 11652E,
Programming Reference

Defmite-Iength block response data 1-16
Defmitions 4-3
DELay 25-3
DELay command/query 14-5, 19-7
Device address 1-3

HP-IB 2-2
RS-232C 3-6

Device clear 2-3
Device dependent errors C-l
DLISt

Command 8-2
DLISt selector 8-2
DLISt Subsystem 8-1
Documentation conventions 4-3
DOWNload command 7-7
DSP command 6-20
DTE 3-1
Duplicate keywords 1-5
DURation command/query 18-5

E

EDGE command/query 18-6 - 18-7
EDGE Trigger Mode 23-1
Ellipsis 4-3
Embedded strings 1-2 - 1-3
Enter statement 1-2
Error messages C-l
ERRor query 6-21
ESB B-3
Event Status Register B-3
EXE B-4
Execution errors C-3
Exponents 1-8
Extended interface 3-3

Index-4

F

FALLtime 27-6
FIND command/query 12-8 - 12-9
FIND query 16-8
FORMat 26-10
Fractional values 1-8
FREQuency 27-7

G

GET 2-3
GLITch command/query 18-8
Glitch Timing Data 6-14
Group execute trigger 2-3

H

HAXis command/query 15-5 -15-6
HEADer command 1-12
HEADer command/query 6-22
Headers 1-3 - 1-4, 1-7
Host language 1-3
HP-IB 2-1, B-6
HP-IB address 2-1
IfP-IB device address 2-2
HP-IB interface 2-1
HP-IB interface code 2-2
HP-IB interface functions 2-1

I

IASSembler command 7-10
IEEE 488.1 2-1, A-I

HP 16528/16528
Programming Reference

IEEE 488.1 bus cotnmands 2-3
IEEE 488.2 A-1
IEEE 488.ZStandard 1-1
IFC 2-3
Infiniry +2
Initializ-ation 1-10
IMTiali-e command 7-8
Input buffer A-2
INSert command L+6,19-8
Instruction headers L-3
Instruction parameters L-4
Instruction syntar L-2
Instruction terminator L-9
Instructions 1-3
Instrument address 2-2
Interface capabilities 2-1,

RS-232C 3-5
Interface clear 2-3
Interface code

HP-IB 2-2
Interface select code

RS-232C 3-6
Internal errors C-4

K

KEY command/query 6-23
Keyvord data 1-8
Keyvords +L

L

LABeI command/query 11-6 - LL-7,I7-3 - L7-4
LCL B-4
LER query 6-25
LEVeI 23-4
LINE command/query 8-5, L3-9
Linefeed L-9,4-3

HP 16528/16528
Programming Reference

Listening syntzur A-8
LOAD:CONFig command 7 -9
LOAD:lASSembler command 7-L0
Local 2-2
Local lockout 2-2
LOCKout command 3-7
LOCKout command/query 6-26
Longform I-7
LONGform command L-Lz
LONGform command/query 6-27
Lowercase I-7

M

Machine selector 10-3
MACHine Subsystem 10-1
MASTeT command/query 11-8
MAV B-3
MENU command/query 6-28
MESE command/query 6-29
MESR query 6-3I - 6-32
MMEMoT subsystem 7-L
MMODe command/query L3-L0, L9-9
Mnemonics L-8,4-1
MODE 23-5,25-4 - 25-5
Module Level Commands zL-L
MSB B-4
MSG B-3
MSS 8.3
Multiple numeric variables L-L7
Multiple progrtun commands L-9
Multiple queries L-I7
Multiple subsystems 1-9

N

NAME command/query L0-7
New Line character L-9

Index-S

IEEE 488.1 bus commands 2-3
IEEE 488.2 A-I
IEEE 488.2 Standard 1-1
IFC 2-3
Infinity 4-2
Initialization 1-10
INITialize command 7-8
Input buffer A-2
INSert command 14-6,19-8
Instruction headers 1-3
Instruction parameters 1-4
Instruction syntax 1-2
Instruction terminator 1-9
Instructions 1-3
Instrument address 2-2
Interface capabilities 2-1

RS-232C 3-5
Interface clear 2-3
Interface code

HP-IB 2-2
Interface select code

RS-232C 3-6
Internal errors C-4

K

KEY command/query 6-23
Keyword data 1-8
Keywords 4-1

L

LABel command/query 11-6 - 11-7, 17-3 - 17-4
LCL B-4
LER query 6-25
LEVel 23-4
LINE command/query 8-5, 13-9
Linefeed 1-9, 4-3

HP 16528/16528
Programming Reference

Listening syntax A-8
LOAD:CONFig command 7-9
LOAD:IASSembler command 7-10
Local 2-2
Locallockout 2-2
LOCKout command 3-7
LOCKout command/query 6-26
Longform 1-7
LONGform command 1-12
LONGform command/query 6-27
Lowercase 1-7

M

Machine selector 10-3
MACHine Subsystem 10-1
MASTer command/query 11-8
MAV B-3
MENU command/query 6-28
MESE command/query 6-29
MESR query 6-31 - 6-32
MMEMory subsystem 7-1
MMODe command/query 13-10,19-9
Mnemonics 1-8, 4-1
MODE 23-5, 25-4 - 25-5
Module Level Commands 21-1
MSB B-4
MSG B-3
MSS B-3
Multiple numeric variables 1-17
Multiple program commands 1-9
Multiple queries 1-17
Multiple subsystems 1-9

N

NAME command/query 10-7
New Line character 1-9

Index-5

NL L-9,4-3
Normal Mode 24-2,26-3
Notation conventions +3
Numeric base 1-15

Numeric bases 1-8

Numeric data 1-8

Numeric variables 1-15

NWIDth 21-8

o

OcoNdition command/query 19-10

OFFSet 22-5 - 22-6
OPATtern command/query 1"3-L1 - 13-L2, L9-11 -

L9-L2

OPC B-4
Operation Complete B-4
OR notation +3
oscilloscope zL-I
Oscillosmpe Subsystem commands ZL-L
OSEarch command/query 13-13, 19-13

OSTate L3-L4
OSTate query 9-3
OTAG command/query 13-15

OTIMe command/query 9-5, l9-I4
Output buffer L-6
Output command L-3
Output queue A-2
OUTPUT statement L-z
Overlapped command 5-9,5-L5,6-38 - 6-39
Overlapped commands 4-z
OVERshoot 27-9

P

PACK command 7-IL
Parameter syntzu< rules L-7

Parameters L-4

lndex-6

Parity 3-5
Parse tree A-7
Parser A-2
PATTern command 20-5
PATTern command/query 18-9 - 18-10

PATTern Trigger Mode ?3-L
PERiod 27-10
POINts query 26-11,

PON B-3
PPOWeT query 6-33
PREamble 26-Lz
Preambledescription 6-8
PREShoot 27-IL
PREstore command/query L2-L0 - L}-LL
PRINT com-and 6-Y
Printer mode 2-L

PROBe 22-7
Program data A-14
Program examples 4-LI
Program message A-9
Program message syntax l-2
Program message terminator L-9
Program synta,x L-2

Programming conventions +3
Protocol 3-5, A-3

None 3-5
XOND(OFF 3-5

Protocol exceptions A-4
Protocols A-2
PURGe co mand 7-L2
PWrDrh 27-12

a

Query t-3, L-6,1-13
*ESE 5-4
*ESR 5-6
*IDN 5-8
*oPC 5-9
*sRE 5-11

HP 16528/16s28
Programming Relerence

NL 1-9,4-3
Normal Mode 24-2, 26-3
Notation conventions 4-3
Numeric base 1-15
Numeric bases 1-8
Numeric data 1-8
Numeric variables 1-15
NWIDth 27-8

o

OCONdition command/query 19-10
OFFSet 22-5 - 22-6
OPATtern command/query 13-11 - 13-12, 19-11 ­
19-12
ope B-4
Operation Complete B-4
OR notation 4-3
oscilloscope 21-1
Oscilloscope Subsystem commands 21-1
OSEarch command/query 13-13,19-13
OSTate 13-14
OSTate query 9-3
OTAG command/query 13-15
OTIMe command/query 9-5, 19-14
Output buffer 1-6
Output command 1-3
Output queue A-2
OUTPUT statement 1-2
Overlapped command S·9, 5-15, 6-38 - 6-39
Overlapped commands 4-2
OVERshoot 27-9

p

PACK command 7-11
Parameter syntax rules 1-7
Parameters 1-4

Index-6

Parity 3-5
Parse tree A-7
Parser A-2
PATTern command 20-5
PAllern command/query 18-9 - 18-10
PATTern Trigger Mode 23-1
PERiod 27-10
POINts query 26-11
PON B-3
PPOWer query 6-33
PREamble 26-12
Preamble description 6-8
PREShoot 27-11
PREstore command/query 12-10 - 12-11
PRINt command 6-34
Printer mode 2-1
PROBe 22-7
Program data A-14
Program examples 4-11
Program message A-9
Program message syntax 1-2
Program message terminator 1-9
Program syntax 1-2
Programming conventions 4-3
Protocol 3-5, A-3

None 3-5
XON/XOFF 3-5

Protocol exceptions A-4
Protocols A-2
PURGe command 7-12
PWIDth 27-12

Q

Query 1-3,1-6,1-13
*ESE 5-4
*ESR 5-6
*IDN 5-8
*OPC 5-9
*SRE 5-11

HP 16528/16528
Programming Reference

Query (continued)
*sTB 5-13
ACCumulate L+4, L5-4, 19-6
ALL 27-5
AMODe 18-4
ARM L0-4, 21-4
ARMBnc 6-4
ASSign 10-5

AUToload 7-4
BRANch L2-5

CATalog 7-5
CLOCK LL-4
CMASK L6.4
COLumn 8-3, L3-6

couNt 24-4,26-8
COUPlirg 22-4
CPERiod 1L-5
DATA 6-5, 13-9, t6-6,?6-g
DELay L4-5, L9-7,25-3
DURation 18-5

EDGE 18-6
ERRor 6-2L
FALLtime 27-6
FIND L2-8,16-8
FORMat ?6-L0
FREQuency 27-7
GLITch 18-8

HAXis 15-5
HEADeT 6-22
KEY 6-23
LABeI LL-6, I7-3
LER 6-25
LEVeI 23-4
LINE 8-5, L3-9
LOCKout 6-26
LONGform 6-27
MASTeT 1-1-8

MENU 6-?A
MESE 6-29
MESR 6-3L
MMODe 13-L0, L9-9

HP 16528/16528
Programming Reference

Query (continued)
MODE 23-5,25-4
NAME LA.7

lrI\MIDth 27-8
OcoNdition 19-10

OFFSet 22-5
OPATtern 13-11-, L9-11

OSEarch L3-L3, L9-L3
OSTate 9-3, L3-I4
OTAG 1"3-15

OTIMe 9-5, L9-I4
OVERshoot 27-9
PATTern 18-9
PERiod 27-L0
POINTS 25-TL
PPOWeT 6-33
PREamble 26-Lz
PREShoot 27-LL

PROBe 72-7
PWIDTh 27-L2
RANGe L2-L2, L4-7, L6-9, L9-15, 22-8,25-6
RECord 26-L3
RESTart L2-I4
RlSetime 27-L3
RMODe 6-35
RUNTiI L3-L6, 16-10, Lg-L7

SEQuence 12-16

,,r, SETup 6-36
SLAVe 11-10

, SLOPe 23-6
SMODe 2L-6
SOURce 23-7, 26-L4; 27 -L4'
SPERiod 19-19 1

STORe L2-I7
SYSTem:DATA 6-5
SYStem:SETup 6-%
TAG L2.I9
TAVerage L3-L8, L9-ZA

TERM L2-2L

THReshold 1L-1"1, 17-6

TMAXimum 13-1"9, L9-ZL

lndex-7

Query (continued)
*STB 5-13
ACCumulate 14-4, 15-4, 19-6
ALL 27-5
AMODe 18-4
ARM 10-4, 21-4
ARMBnc 6-4
ASSign 10-5
AUToload 7-4
BRANch 12-5
CATalog 7-5
CLOCk 11-4
CMASk 16-4
COLumn 8-3, 13-6
COUNt 24-4, 26-8
COUPling 22-4
CPERiod 11-5
DATA 6-5,13-8,16-6,26-9
DELay 14-5, 19-7,25-3
DURation 18-5
EDGE 18-6
ERRor 6-21
FALLtime 27-6
FIND 12-8, 16-8
FORMat 26-10
FREQuency 27-7
GLITch 18-8
HAXis 15-5
HEADer 6-22
KEY 6-23
LABel 11-6,17-3
LER 6-25
LEVel 23-4
LINE 8-5,13-9
LOCKout 6-26
LONGform 6-27
MASTer 11-8
MENU 6-28
MESE 6-29
MESR 6-31
MMODe 13-10, 19-9

HP 16528/16528
Programming Reference

Query (continued)
MODE 23-5, 25-4
NAME 10-7
NWIDth 27-8
OCONdition 19-10
OFFSet 22-5
OPATtern 13-11,19-11
OSEarch 13-13, 19-13
OSTate 9-3, 13-14
OTAG 13-15
OTIMe 9-5, 19-14
OVERshoot 27-9
PATfern 18-9
PERiod 27-10
POINts 26-11
PPOWer 6-33
PREamble 26-12
PREShoot 27-11
PROBe 22-7
PWIDth 27-12
RANGe 12-12,14-7,16-9,19-15,22-8,25-6
RECord 26-13
RESTart 12-14
RISetime 27-13
RMODe 6-35
RUNTil 13-16, 16-10, 19-17
SEQuence 12-16
SETup 6-36
SLAVe 11-10
SLOPe 23-6
SMODe 21-6
SOURce 23-7'-26-14; 27-14\
SPERiod 19-19 ;
STORe 12-17
SYSTem:DATA 6-5
SYStem:SETup 6-36
TAG 12-19
TAVerage 13-18,19-20
TERM 12-21
THReshold 11-11, 17-6
TMAXimum 13-19,19-21

Index-7

Query (continued)
TMINimum L3-20, 19-22
TYPE L0-8,2+5,26-L5
UPI-oad 7-L5
VALid %-L6
VAMPlitude 27-L5
VAXis Ls-V
VBASe 27-L6
VIVIAX 27-T7
VMIN 27-L8
VPP 27-L9
VRUNs L3-2L,19-23
VTOP 27-20
XcoNdition L9-24
XlNCrement ?6-L7
XORigin ?A-LB

XOTag L3-22

XOTime L9-25
XPATtern L3-23, L9-25
XREFerence 26-L9
XSEarch L3-25, Lg-?f.
XSTate 9-4, L3-26
XTAG L3.27

XTIMe 9-6, L9-29
YlNCrement ?5-20
YORigin ?5-2L
YREFerence 26-22

Query errors C-5
Query responses L-1L, +2
Question mark L-6

QYE 8.4

RANGe 22-8,25-6
RANGe command 20-6
RANGe command/qrlsry, L}-LZ - I2-I3, t4-7,
19-15

Receive Data (RD) 3-2 - 3-3

lndex-8

record ?5-L3
waveform ?f'-3

Remote 2-2
Remote enable 2-3
REMove command LL-g, L4-8, \7-5,1"9-L6, 20-7
REN 2-3
REName command 7-13
Request To Send (RTS) 3-4
Response data 1-16
R esponse message A-ZL
Responses L-Lz
RESTart comrnand/query L2-L4 - L2-L5
RlSetime 2l-L3
RMoDecommand/query 6-35
Root 4-4
RQC B-4
RQS B-3
RS-232C 3-L,3-6, A-1"

Run Control Commands 6-L
RUNTiI command/query L3-L6 - L3-L7, 1,6-10 -

L6-11, L9-L7 - 19-18

R

S

SCHart selector 1,5-3

SCHart Subsystem L5-1

SCOPe Subsysfem 21-L
SDC 2-3
Section data 6-8

, Section data formaf 6-6
Section header 6-8
Selected device clear Z-3

Separator A-18
SBQuence cornmand/query L2-L6
Sequential commands 4-2
Serial poll 8-6

16-9, Service Request Enable Register B-3
SETUp 6-36
SETUp command/query 6-% - 6-37

SFORmat selector 11-3

HP 1652B.116s28
Programming Relerence

s

record 26-13
waveform 26-3

Remote 2-2
Remote enable 2-3
REMove command 11-9,14-8,17-5,19-16,20-7
REN 2-3
REName command 7-13
Request To Send (RTS) 3-4
Response data 1-16
Response message A-21
Responses 1-12
RESTart command/query 12-14 - 12-15
RISetime 27-13
RMODe command/query 6-35
Root 4-4
RQC B-4
RQS B-3
RS-232C 3-1, 3-6, A-I
Run Control Commands 6-1
RUNTil command/query 13-16 - 13-17, 16-10 ­
16-11, 19-17 - 19-18

SCHart selector 15-3
SCHart Subsystem 15-1
SCOPe Subsystem 21-1
SDC 2-3
Section data 6-8
Section data format 6-6
Section header 6-8
Selected device clear 2-3
Separator A-18
SEQuence command/query 12-16
Sequential commands 4-2
Serial poll B-6

12-12 - 12-13) 14-7, 16-9, Service Request Enable Register B-3
SETup 6-36
SETup command/query 6-36 - 6-37
SFORmat selector 11-3

R

Query (continued)
TMINimum 13-20, 19-22
TYPE 10-8,24-5,26-15
UPLoad 7-15
VALid 26-16
VAMPlitude 27-15
VAXis 15-7
VBASe 27-16
VMAX 27-17
VMIN 27-18
vpp 27-19
VRUNs 13-21, 19-23
vrop 27-20
XCONdition. 19-24
XINCrement 26-17
XORigin 26-18
XOTag 13-22
XOTime 19-25
XPATtern 13-23,19-26
XREFerence 26-19
XSEarch 13-25, 19-28
XSTate 9-4, 13-26
XTAG 13-27
XTIMe 9-6, 19-29
YINCrement 26-20
YORigin 26-21
YREFerence 26-22

Query errors C-5
Query responses 1-11,4-2
Question mark 1-6
QYE B-4

RANGe 22-8,25-6
RANGe command 20-6
RANGe command/query.
19-15
Receive Data (RD) 3-2 - 3-3

Index-8 HP 16528/16528
Programming Reference

SFORmat Subsystem 11-1 Subsystem (continued)
Shortform 1-7 STRace 12-1
Simple commands L4 SWAVeform 1zt-1
SLAVe command/query 11-10 SYMBoI 20-1
SllStselector 13-5 TFORmar 17-1 :i'
sLISr Subsystem 13-L TlMebase 25-1
SLOPe 23-6 :::

'
TRIGger 23-1

SMODe command 21-6 TTRace 18-1
SMODe query 2I-6 : TWAVeform L9-1
SOURce ?3-7,?6-L4,27-L4 i: WAVeform 26-1
Spaces L4 WLIST 9-1
SieRioa query L9-1"9 Subsystem commands 4-4
Square brackets 4-3 . Suffix multiplier .4-16 : : "

START command 6-38 Suffix units A-16
State data iSWAVeform selector L+3 ' . '

with either time or state tags 6-12 : SWAVeform Subsystem L4-L n. -i .

without tags 6-12 ;SYMBol selector Z)-3
Status L-17, 5-2,8-L .. SyMBol Subsystem 20-L _..-iii
Status byte B-5 . Syntax A-8 * I . , ". .
Status registers 1-lT syntax diagram . ',,

Status reporting B-1 ,. ACQuire Subsystem 2+l :
Stop bits 3-5 CHANnel Subsystem 22-2
STOP command 6-39 Common commands 5-2
STORe comnand/query 12-17 - L2-L8 COMPare Subsystem 16-2
STORe:CONFig command 7-1.4 DLIST Subsystem 8-t
STRace selector 12-4 MACHine Subsvstem i.0-2
STRaceSubsystem 12-L :i ;' ".i' .., i,-: I MEASureSubsystem 27-3
Stringdata L-8 t ', ' t'l MMEMorysubsystem 7-2-7-3

!:HiJ#"tles
1-14 : - 'i" r ' SCHart Subsystem 15-2

' '- ScoPeSubsystem 2L-1
ACQuire2z$-1,'..,',1.i-.:'1t.,.SFoRmatSubsystem11-1.i.;
CHANnel 22-1 :t ,t'. -iii; rr,'1'.'ir SLISISubsVstem 13.-2
COMPare 16-1 ,1.'-^;i, "

,;t STRace Su-bsyste- 12-L
DLIST 8-1 : . i ': SWAVeform Subsystem 1.4-2;
MACHine 10-1 "1

.i ,: i"ii,l SyMBolsubsystem 20-2
MEASure 27-1 ..) | L;jl'ri:l I j {i: t:- SVstemcommands 6-3
MMEMoT 7-1 : ji, '. r I ir tfoRmatSubsystem 17-1
SCHart 15-1

SCOpe 21-1 . :'r ; r,, stem Z3-i't1;. 'r ':';' -

SFORmat 11,-L 'ir, " TTRacesubsystem 18-2
SLIST 13-1" : ' ' : ",' -. TWAVeform subsystem 19-2

HP 16528/16528
Programming Reference

Index-9

SFORmat Subsystem 11-1
Shortform 1-7
Simple commands 1-4
SLAVe command/query 11-10
SLISt selector 13-5
SLISt Subsystem 13-1
SLOPe 23-6
SMODe command 21-6
SMODe query 21-6
SOURce 23-7,26-14,27-14
Spaces 1-4
SPERiod query 19-19
Square brackets 4-3
STARt command 6-38
State data

with either time or state tags 6-12
without tags 6-12

Status 1-17,5-2, B-1
Status byte B-5
Status registers 1-17
Status reporting B-1
Stop bits 3-5
STOP command 6-39
STORe command/query 12-17 - 12-18
STORe:CONFig command 7-14
STRace selector 12-4
STRace Subsystem 12-1
String data 1-8
String variables 1-14
Subsystem

ACQuire 24-1
CHANnel 22-1
COMPare 16-1
DLIST 8-1
MACHine 10-1
MEASure 27-1
MMEMory 7-1
SCHart 15-1
SCOPe 21-1
SFORmat 11-1
SLISt 13-1

HP 16528/16528
Programming Reference

Subsystem (continued)
STRace 12-1
SWAVeform 14-1
SYMBol 20-1
TFORmat 17-1
TIMebase 25-1
TRIGger 23-1
TfRace 18-1
TWAVeform 19-1
WAVeform 26-1
WLISt 9-1

Subsystem commands 4-4
.SuffIX multiplier A-16
SuffIX units A-16

)SWAVeform selector 14-3
SWAVeform Subsystem 14-1

iSYMBol selector 20-3
SYMBol Subsystem 20-1
Syntax A-8
Syntax diagram

ACQuire Subsystem 24-1
CHANnel Subsystem 22-2
Common commands 5-2
COMPare Subsystem 16-2
DLISt Subsystem 8-1
MACHine Subsystem 10-2
MEASure Subsystem 27-3
MMEMory subsystem 7-2 -7-3
SCHart Subsystem 15-2
SCOPe Subsystem 21-1
SFORmat Subsystem 11-1
SLISt Subsystem 13-2
STRace Subsystem 12-1
SWAVeform Subsystem 14-2
SYMBol Subsystem 20-2
System commands 6-3
TFORmat Subsystem 11.-,1"".
TIMebase Sub~ystem 25-1
TRIGger Subsystem"23<i'j.L¥;
TfRace Subsystem 18-2
TWAVeform Subsystem 19-2

Index-9

Spta,x diagram (continued)
WAVeform Subsystem 26-2
WLIST Subsystem 9-I

Synta,x diagrams +2
IEEE 48,8.2 A-5

System commands +4,6-I

T

TAG command/query I2-Lg - I2-ZA
Talk only mode 2-L
Talking synta:r A-21
TAVerage query 13-L8, L9-20
TERM command/query L2-2L - L2-22

Terminator 1-9, A-?6
TFORmat selector L7-2

TFORmat Subsystem L7-L

Three-wire Interface 3-2
Threshold command/query L1"-1tr, 17 -6
Timing Glitch Data 6-L4
TMAXimum query L3-I9, L9-ZL
TMINimum query L3-?n, L9-22

Trailing dots +3
Transitional Timing Data 6-L5
Transmit Data (TD) 3-2 - 3-3
Truncation rule 4-L
TTRace selector 18-3

TTRace Subsystem 18-1

TWAVeform selector 19-5

TWAVeform Subsystem L9-1

TYPE 2+5
TWE conrmand/query 10-8

TYPE query ?6-L5

U

Units 1-8

UPLoad query 7-I5

lndex-10

Uppermse L-7

URQ B-3

v

VALid 26.L6
vAMPlitude 27-L5
VAXis ssmrtr&nd/query L5-7

VBASe 27-16

VN{AX 27-17
VMIN 27.L8
VPP 27.L9
VRUNs query L3-2I, 19-23

\,-roP 27-20

w

waveform
record 26-3

White space L-4
WIDTh command 20-8
WLIST selector 9-2
WLIST Subsystem 9-1
WORD Format 26-5

x

XcONdition command/query L9-24

XlNCrement query ?5-L7
XORigin query ?f.-L8
XOTag query L3-22

XOTime query L9-25
XPATtern command/query L3-23 - L3-24, L9-26 -

L9-27

XREFerence query 26-L9

XSEarch command/query L3-25, L9-?8

XSTate query 9-4, L3-26

HP 16528/16528
Programming Reference

Syntax diagram (continued)
WAVeform Subsystem 26-2
WLISt Subsystem 9-1

Syntax diagrams 4-2
IEEE 488.2 A-5

System commands 4-4, 6-1

T

TAG command/query 12-19 - 12-20
Talk only mode 2-1
Talking syntax A-21
TAVerage query 13-18,19-20
TERM command/query 12-21- 12-22
Terminator 1-9, A-26
TFORmat selector 17-2
TFORmat Subsystem 17-1
Three-wire Interface 3-2
Threshold command/query 11-11, 17-6
Timing Glitch Data 6-14
TMAXimum query 13-19, 19-21
TMINimum query 13-20, 19-22
Trailing dots 4-3
Transitional Timing Data 6-15
Transmit Data (TD) 3-2 - 3-3
Truncation rule 4-1
TTRace selector 18-3
TTRace Subsystem 18-1
TWA<Veform selector 19-5
TWAVeform Subsystem 19-1
TYPE 24-5
TYPE command/query 10-8
TYPE query 26-15

u

Units 1-8
UPLoad query 7-15

Index-10

Uppercase 1-7
URQ B-3

v

VALid 26-16
VAMPlitude 27-15
VAXis command/query 15-7
VBASe 27-16
VMAX 27-1.7
VMIN 27-18
VPP 27-19
VRUNs query 13-21, 19-23
VTOP 27-20

w

waveform
record 26-3

White space 1-4
WIDTh command 20-8
WLISt selector 9-2
WLISt Subsystem 9-1
WORD Format 26-5

x

XCONdition command/query 19-24
XINCrement query 26-17
XORigin query 26-18
XOTag query 13-22
XOTime query 19-25
XPATtern command/query 13-23 -13-24,19-26­
19-27
XREFerence query 26-19
XSEarch command/query 13-25, 19-28
XSTate query 9-4, 13-26

HP 16528/16528
Programming Reference

XTAG command/query 13-27
XTIMe command/query 9-6, L9-29
xxx 4-3,+5
XXX (meaniog o0 I-3

:r

YlNCrement query 26-20 . , :,, :

YORigin query ?5-2L
1

, ,'
YREFerence query 26-22 , . '

HP 16528/16528
Programming Reference'

Y

,']

Index-l 1

XTAG command/query 13-27
XTIMe command/query 9-6,19-29
XXX 4-3,4-5
XXX (meaning of) 1-3

y

YINCrement query 26-20
YORigin query 26-21
YREFerence query 26-22

HP 16528/16528
Programming Reference'

Index-11

ftE HFT|IfJJ

Printed in U.S.A.

FhUl HEWLETT
a:~ PACKARD

Printed in U.S.A.

ftE
HEWLETT
PACKARD

I
T
J

!O)
=(ll-!{ N
=Eqt

=cD= (rl

=.
q)

5trGTF
IO
oGI
-r-

It

O"O
dP
-J6St
- r
(D

No
-o

